RUS  ENG
Full version
PEOPLE

Tsybakov Aleksandr Borisovich

Publications in Math-Net.Ru

  1. Minimax rate of testing in sparse linear regression

    Avtomat. i Telemekh., 2019, no. 10,  78–99
  2. Algorithms of robust stochastic optimization based on mirror descent method

    Avtomat. i Telemekh., 2019, no. 9,  64–90
  3. Estimation of matrices with row sparsity

    Probl. Peredachi Inf., 51:4 (2015),  32–46
  4. Optimal exponential bounds on the accuracy of classification

    Constr. Approx., 39:3 (2014),  421–444
  5. On Walsh code assignment

    Probl. Peredachi Inf., 48:4 (2012),  41–49
  6. Sharp optimality in density deconvolution with dominating bias. II

    Teor. Veroyatnost. i Primenen., 52:2 (2007),  336–349
  7. Sharp optimality in density deconvolution with dominating bias. I

    Teor. Veroyatnost. i Primenen., 52:1 (2007),  111–128
  8. Recursive Aggregation of Estimators by Mirror Descent Algorithm with Averaging

    Probl. Peredachi Inf., 41:4 (2005),  78–96
  9. Block thresholding and sharp adaptive estimation in severely ill-posed inverse problems

    Teor. Veroyatnost. i Primenen., 48:3 (2003),  534–556
  10. Asymptotically Efficient Signal Estimation in $L_2$ under General Loss Functions

    Probl. Peredachi Inf., 33:1 (1997),  94–106
  11. Asymptotic Efficiency in Estimation of a Convex Set

    Probl. Peredachi Inf., 30:4 (1994),  33–44
  12. Efficient estimation of an averaged derivative

    Dokl. Akad. Nauk, 331:5 (1993),  550–552
  13. Nonparametric Recursive Estimation in Nonlinear ARX Models

    Probl. Peredachi Inf., 29:4 (1993),  24–34
  14. Estimation of the Density Support and Its Functionals

    Probl. Peredachi Inf., 29:1 (1993),  3–18
  15. A Family of Asymptotically Optimal Methods for Choosing the Order of a Projective Regression Estimate

    Teor. Veroyatnost. i Primenen., 37:3 (1992),  502–512
  16. Optimal Rates of Convergence of Estimates in the Stochastic Problem of Computerized Tomography

    Probl. Peredachi Inf., 27:1 (1991),  92–103
  17. Optimal Order of Accuracy of Search Algorithms in Stochastic Optimization

    Probl. Peredachi Inf., 26:2 (1990),  45–53
  18. Recursive Estimation of the Mode of a Multivariate Distribution

    Probl. Peredachi Inf., 26:1 (1990),  38–45
  19. Asymptotic optimality of the $C_p$-test for the orthogonal series estimation of regression

    Teor. Veroyatnost. i Primenen., 35:2 (1990),  305–317
  20. Passive stochastic approximation

    Avtomat. i Telemekh., 1989, no. 11,  127–134
  21. Optimal projection estimates for a regression function of unknown smoothness

    Dokl. Akad. Nauk SSSR, 304:2 (1989),  297–301
  22. Optimal Estimation Accuracy of Nonsmooth Images

    Probl. Peredachi Inf., 25:3 (1989),  13–27
  23. Asymptotic normality of whitened $M$-estimates

    Avtomat. i Telemekh., 1987, no. 7,  113–124
  24. Robust estimation of the linear model parameters in the presence of moving average noise

    Avtomat. i Telemekh., 1987, no. 6,  87–99
  25. Transmission Accuracy of a Continuous Signal with Binary Quantization

    Probl. Peredachi Inf., 23:1 (1987),  68–78
  26. Choice of the Bandwidth for Kernel Nonparametric Regression

    Teor. Veroyatnost. i Primenen., 32:1 (1987),  153–159
  27. Robust Reconstruction of Functions by the Local-Approximation Method

    Probl. Peredachi Inf., 22:2 (1986),  69–84
  28. Convergence Rate of Nonparametric Estimates of Maximum-Likelihood Type

    Probl. Peredachi Inf., 21:4 (1985),  17–33
  29. Signal Processing by the Nonparametric Maximum-Likelihood Method

    Probl. Peredachi Inf., 20:3 (1984),  29–46
  30. Estimators of maximum likelihood type for nonparametric regression

    Dokl. Akad. Nauk SSSR, 273:6 (1983),  1310–1314
  31. Robust Estimates of a Function

    Probl. Peredachi Inf., 18:3 (1982),  39–52
  32. Nonparametric Signal Estimation when There Is Incomplete Information on the Noise Distribution

    Probl. Peredachi Inf., 18:2 (1982),  44–60
  33. On the empiric risk minimization method in identification problems

    Avtomat. i Telemekh., 1981, no. 9,  77–85
  34. Error Bounds for the Method of Minimization of Empirical Risk

    Probl. Peredachi Inf., 17:1 (1981),  50–61

  35. Remark on “Recursive Aggregation of Estimators by the Mirror Descent Algorithm with Averaging” published in Probl. Peredachi Inf., 2005, no. 4

    Probl. Peredachi Inf., 42:3 (2006),  109
  36. On convergence of nonparametric robust algorithms of function restoration

    Avtomat. i Telemekh., 1983, no. 12,  66–76


© Steklov Math. Inst. of RAS, 2026