RUS  ENG
Full version
PEOPLE

Nazin Aleksandr Viktorovich

Publications in Math-Net.Ru

  1. Non-quadratic proxy functions in mirror descent method applied to designing of robust controllers for nonlinear dynamic systems with uncertainty

    Zh. Vychisl. Mat. Mat. Fiz., 64:4 (2024),  820–832
  2. Two-armed bandit problem and batch version of the mirror descent algorithm

    Mat. Teor. Igr Pril., 13:2 (2021),  9–39
  3. Algorithms of robust stochastic optimization based on mirror descent method

    Avtomat. i Telemekh., 2019, no. 9,  64–90
  4. The 100th birthday of Yakov Zalmanovich Tsypkin

    Avtomat. i Telemekh., 2019, no. 9,  6–8
  5. Algorithms of inertial mirror descent in convex problems of stochastic optimization

    Avtomat. i Telemekh., 2018, no. 1,  100–112
  6. Saddle point mirror descent algorithm for the robust PageRank problem

    Avtomat. i Telemekh., 2016, no. 8,  105–124
  7. $L_1$-optimal linear programming estimator for periodic frontier functions with Hölder continuous derivative

    Avtomat. i Telemekh., 2014, no. 12,  78–100
  8. A mirror descent algorithm for minimization of mean Poisson flow driven losses

    Avtomat. i Telemekh., 2014, no. 6,  30–38
  9. Randomized algorithm to determine the eigenvector of a stochastic matrix with application to the PageRank problem

    Avtomat. i Telemekh., 2011, no. 2,  131–141
  10. $L_1$-optimal nonparametric frontier estimation via linear programming

    Avtomat. i Telemekh., 2005, no. 12,  143–161
  11. Recursive Aggregation of Estimators by Mirror Descent Algorithm with Averaging

    Probl. Peredachi Inf., 41:4 (2005),  78–96
  12. On convergence of external ellipsoidal approximations of the reachability domains of discrete dynamic linear systems

    Avtomat. i Telemekh., 2004, no. 8,  39–61
  13. Nonparametric frontier estimation by linear programming

    Avtomat. i Telemekh., 2004, no. 1,  66–73
  14. Virtual analyzers of marketing information in an enterprise management system

    Probl. Upr., 2003, no. 4,  30–35
  15. Method of Stochastic Approximation with Averaging for Evaluating Sizes of Microparticles in Digital Image

    Avtomat. i Telemekh., 2002, no. 11,  175–182
  16. Attainable information bounds in the problem of the adaptive control of nonlinear stochastic systems under nonparametric uncertainty

    Avtomat. i Telemekh., 1999, no. 3,  180–195
  17. Asymptotic properties of quasi-optimal algorithms of stochastic approximation under unknown density of noise

    Avtomat. i Telemekh., 1995, no. 10,  70–77
  18. Lower Information Bounds for Adaptive Tracking of a Linear Discrete Plant

    Probl. Peredachi Inf., 31:1 (1995),  56–67
  19. Passive stochastic approximation with averaging along the trajectory

    Avtomat. i Telemekh., 1994, no. 5,  48–58
  20. Asymptotically quasi-efficient estimates for stochastic approximation with unknown noise density

    Dokl. Akad. Nauk, 338:4 (1994),  465–467
  21. Implemented Optimal Algorithm of Passive Stochastic Approximation with Averaging along a Trajectory

    Probl. Peredachi Inf., 30:3 (1994),  68–78
  22. An asymptotically efficient algorithm for the adaptive control of a multidimensional linear plant

    Avtomat. i Telemekh., 1993, no. 7,  95–110
  23. Method of Averaging Along Trajectories in Passive Stochastic Approximation (Linear Algorithm)

    Probl. Peredachi Inf., 29:4 (1993),  35–45
  24. Estimation of parameters under random and bounded noise

    Avtomat. i Telemekh., 1992, no. 10,  68–74
  25. Informational inequalities in a problem of the adaptive control of a multidimensional linear object

    Avtomat. i Telemekh., 1992, no. 4,  111–118
  26. Optimal and robust estimation of slowly drifting parameters of a linear regression process

    Avtomat. i Telemekh., 1991, no. 6,  66–76
  27. Information inequalities in a problem of adaptive control of a linear object

    Dokl. Akad. Nauk SSSR, 317:2 (1991),  323–325
  28. Passive stochastic approximation

    Avtomat. i Telemekh., 1989, no. 11,  127–134
  29. Informational inequalities in gradient stochastic optimization optimal feasible algorithms

    Avtomat. i Telemekh., 1989, no. 4,  127–138
  30. A game problem of adaptive choice and an algorithm of its solution

    Avtomat. i Telemekh., 1984, no. 11,  70–75
  31. On convergence of Lewis and Varshavskiy-Vorontsova automaton algorithms

    Avtomat. i Telemekh., 1983, no. 9,  165–169
  32. On convergence of the Narendra-Shapiro automaton algorithm

    Avtomat. i Telemekh., 1983, no. 2,  171–174
  33. On the rate of convergence and choice of parameters for an automaton algorithm

    Avtomat. i Telemekh., 1982, no. 7,  70–80
  34. On game approach tî solving of one stochastic programming problem

    Avtomat. i Telemekh., 1978, no. 2,  72–82
  35. On a stochastic zero sum game of two automata

    Avtomat. i Telemekh., 1977, no. 1,  53–61
  36. Adaptive linear sequential machines

    Avtomat. i Telemekh., 1975, no. 12,  114–126

  37. Boris Teodorovich Polyak (1935–2023)

    Avtomat. i Telemekh., 2023, no. 4,  166–168
  38. Book review: A.S. Poznyak. Classical and analytical mechanics. Theory, applied examples and practice

    Avtomat. i Telemekh., 2022, no. 4,  167–168
  39. Remark on “Recursive Aggregation of Estimators by the Mirror Descent Algorithm with Averaging” published in Probl. Peredachi Inf., 2005, no. 4

    Probl. Peredachi Inf., 42:3 (2006),  109
  40. Tenth All-union workshop on adaptive systems

    Avtomat. i Telemekh., 1980, no. 8,  183–190


© Steklov Math. Inst. of RAS, 2026