RUS  ENG
Full version
PEOPLE

Gorshkov Ilya Borisovich

Publications in Math-Net.Ru

  1. On groups whose conjugacy class sizes are not divisible by each other

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:4 (2025),  300–308
  2. Characterization of the group $A_5\times A_5\times A_5$ by the set of conjugacy class sizes

    Algebra Logika, 63:2 (2024),  154–166
  3. О группах, экстремальных относительно $p$-индекса

    Algebra Logika, 62:1 (2023),  135–142
  4. Quasi-definite primitive axial algebras of Jordan type half

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  833–846
  5. The variety of nilpotent Tortkara algebras

    J. Sib. Fed. Univ. Math. Phys., 12:2 (2019),  173–184
  6. On Thompson's conjecture for finite simple exceptional groups of Lie type

    Zap. Nauchn. Sem. POMI, 478 (2019),  100–107
  7. Finite almost simple groups whose Gruenberg–Kegel graphs coincide with Gruenberg–Kegel graphs of solvable groups

    Algebra Logika, 57:2 (2018),  175–196
  8. On Two Problems Related to Associators of Moufang Loops

    Mat. Zametki, 101:2 (2017),  211–214
  9. When the group ring of a simple finite group is serial

    Zap. Nauchn. Sem. POMI, 460 (2017),  168–189
  10. On recognition by spectrum of symmetric groups

    Sib. Èlektron. Mat. Izv., 13 (2016),  111–121
  11. On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  44–51
  12. Recognizability of symmetric groups by spectrum

    Algebra Logika, 53:6 (2014),  693–703
  13. Recognizability of alternating groups by spectrum

    Algebra Logika, 52:1 (2013),  57–63
  14. Thompson's conjecture for simple groups with connected prime graph

    Algebra Logika, 51:2 (2012),  168–192
  15. Recognition by spectrum for finite simple groups with orders having prime divisors at most 17

    Sib. Èlektron. Mat. Izv., 7 (2010),  14–20
  16. On recognition of finite simple groups with connected prime graph

    Sibirsk. Mat. Zh., 50:2 (2009),  292–299
  17. On recognizability by spectrum of finite simple groups of types $B_n$, $C_n$, and ${}^2D_n$ for$n=2^k$

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  58–73


© Steklov Math. Inst. of RAS, 2026