RUS  ENG
Full version
PEOPLE

Izhutkin Viktor Sergeyevich

Publications in Math-Net.Ru

  1. The exterior centers method using a reduced gradient for a nonlinear programming problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 12,  49–57
  2. The center and the barrier function methods using reduced directions for the nonlinear progamming problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 12,  30–41
  3. Reduced direction methods based on a modified Lagrange function for a nonlinear programming problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 12,  33–42
  4. Methods of “reduced” directions, based on a differentiable penalty function, for a problem of nonlinear programming

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 12,  50–59
  5. Reduced-direction methods with feasible points in nonlinear programming

    Zh. Vychisl. Mat. Mat. Fiz., 30:2 (1990),  217–230
  6. Reduced-direction methods for the nonlinear programming problem

    Zh. Vychisl. Mat. Mat. Fiz., 28:12 (1988),  1799–1814
  7. A modification of a method of linearization with accelerated convergence

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 8,  27–30
  8. A hybrid method of nonlinear programming using curvilinear descent

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 2,  61–64
  9. The rate of convergence of the projection method with a choice of step by subdivision for solution of a convex programming problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 6,  53–55
  10. The projection method in a variable metric for a convex programming problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 5,  78–80
  11. The convergence rate of the projection method of solution of the convex programming problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 1,  27–33
  12. A modification of the gradient projection method for a convex programming problem

    Uchenye Zapiski Kazanskogo Universiteta, 129:4 (1969),  32–39


© Steklov Math. Inst. of RAS, 2026