RUS  ENG
Full version
PEOPLE

Korotkii Aleksandr Illarionovich

Publications in Math-Net.Ru

  1. Assimilation of irregular boundary data in recovering model coefficients

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:4 (2025),  214–229
  2. Reconstruction of lava rheology in a thin-layer model of viscous flow

    Russian Journal of Cybernetics, 6:4 (2025),  121–126
  3. On the correctness of one extreme problem related to inverse coefficient problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  170–179
  4. Reconstruction of the absorption coefficient in a model of stationary reaction–convection–diffusion

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024),  166–181
  5. Application of hybrid computers to simulate the lava flow

    Russian Journal of Cybernetics, 5:4 (2024),  103–109
  6. Assimilation of Boundary Data for Reconstructing the Absorption Coefficient in a Model of Stationary Reaction–Convection–Diffusion

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  87–103
  7. Assimilating Data on the Location of the Free Surface of a Fluid Flow to Determine Its Viscosity

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  143–157
  8. Numerical simulation of lava flows in models of isothermal viscous multiphase incompressible fluid

    Meždunar. nauč.-issled. žurn., 2021, no. 12(114),  12–18
  9. Gravitational flow of a two-phase viscous incompressible liquid

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  61–73
  10. Reconstruction of the inlet viscous fluid flow by velocity measurements on any observable part of the free moving surface

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:4 (2019),  56–61
  11. Solvability of a mixed boundary value problem for a stationary reaction-convection-diffusion model

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:1 (2018),  106–120
  12. Recovery of flow parameters of viscous heat-conducting fluid by some changes at its surface

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:1 (2018),  27–36
  13. Numerical simulation of viscous fluid flow based on thermal measurements at its surface

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016),  17–25
  14. Reconstruction of boundary controls in reaction–convection–diffusion model

    Izv. IMI UdGU, 2015, no. 2(46),  85–92
  15. Direct and inverse boundary value problems for models of stationary reaction-convection-diffusion

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:3 (2014),  98–113
  16. On the development of analytical and numerical solution methods for problems of continuum mechanics

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  203–215
  17. Reconstruction of distributed controls in parabolic systems by a dynamic method

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  160–169
  18. Reconstruction of Distributed Controls in Hyperbolic Systems by Dynamic Method

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:3 (2013),  67–78
  19. Control reconstruction in hyperbolic systems

    Avtomat. i Telemekh., 2012, no. 3,  64–78
  20. Reconstruction of boundary controls in hyperbolic systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012),  154–169
  21. Reconstruction of boundary controls in parabolic systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  178–197
  22. Reconstruction of controls in hyperbolic systems by Tikhonov's method with nonsmooth stabilizers

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  99–108
  23. Optimal control of thermal convection

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  103–112
  24. Reconstruction of controls in parabolic systems by Tikhonov's method with nonsmooth stabilizers

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  211–227
  25. Solution in weak sense of a boundary value problem describing thermal convection

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010),  121–132
  26. Optimal boundary control of a system describing thermal convection

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010),  76–101
  27. On solvability of stationary problems of natural thermal convection of a high-viscosity fluid

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:1 (2008),  61–73
  28. Direct and inverse problems of high-viscosity fluid dynamics

    Avtomat. i Telemekh., 2007, no. 5,  84–96
  29. Reconstruction of boundary regimes in the inverse problem of thermal convection of a high-viscosity fluid

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:2 (2006),  88–97
  30. Three-dimensional numerical simulation of the inverse problem of thermal convection using the quasi-reversibility method

    Zh. Vychisl. Mat. Mat. Fiz., 46:12 (2006),  2277–2288
  31. The recovery of parameters of a Navier–Stokes system

    Trudy Inst. Mat. i Mekh. UrO RAN, 11:1 (2005),  122–138
  32. Solution of a retrospective inverse problem for a nonlinear evolutionary model

    Trudy Inst. Mat. i Mekh. UrO RAN, 9:2 (2003),  73–86
  33. Three-dimensional numerical modeling of the inverse problem of thermal convection

    Zh. Vychisl. Mat. Mat. Fiz., 43:4 (2003),  614–626
  34. Numerical simulation of three-dimensional viscous flows with gravitational and thermal effects

    Zh. Vychisl. Mat. Mat. Fiz., 41:9 (2001),  1399–1415
  35. On the dynamic reconstruction of controls and parameters under conditions of incomplete information about the system

    Differ. Uravn., 35:11 (1999),  1482–1486
  36. Reconstruction of the controls and parameters of dynamical systems under incomplete information

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 11,  47–55
  37. Numerical realization of liydrodyiiamic 3D-model of the formation of sedimentary basins

    Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998),  143–173
  38. Implementation of a three-dimensional hydrodynamic model for evolution of sedimentary basins

    Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1190–1203
  39. Upper and lower bounds on accuracy in the problem of the dynamic determination of parameters

    Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996),  227–238
  40. On the reconstruction of the location and intensity of sources of disturbances

    Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996),  217–226
  41. Inverse problems of the dynamics of control systems with distributed parameters

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 11,  101–124
  42. On dynamical solution of inverse reconstruction problem in Goursat–Darboux system

    Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995),  88–103
  43. On dynamical modelling of parameters of some thermal processes

    Mat. Model., 3:8 (1991),  72–81
  44. On an integral representation of $G$-limit operators

    Dokl. Akad. Nauk SSSR, 310:6 (1990),  1296–1299
  45. On the extension of extremal problems that are connected with controllable elliptic systems

    Differ. Uravn., 25:9 (1989),  1518–1522

  46. Actual problems of stability and control theory (APSCT'2009)

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  3–7
  47. Anatolii Fedorovich Sidorov (1933–1999)

    Trudy Inst. Mat. i Mekh. UrO RAN, 9:2 (2003),  3–9
  48. Letter to the Editor

    Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998),  387–390


© Steklov Math. Inst. of RAS, 2026