RUS  ENG
Full version
PEOPLE

Nurminski Evgeni Alekseevich

Publications in Math-Net.Ru

  1. Equivalence relations in convex optimization

    Diskretn. Anal. Issled. Oper., 30:2 (2023),  81–90
  2. A Bicomposition of Conical Projections

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:3 (2023),  73–87
  3. Modeling and optimizing large-scale production-level transportation systems

    Diskretn. Anal. Issled. Oper., 29:3 (2022),  64–84
  4. Neural network analysis of transportation flows of urban aglomeration using the data from public video cameras

    Computer Research and Modeling, 13:2 (2021),  305–318
  5. The Walrasian equilibrium and centralized distributed optimization in terms of modern convex optimization methods on the example of resource allocation problem

    Sib. Zh. Vychisl. Mat., 22:4 (2019),  415–436
  6. Method of conjugate subgradients with constrained memory

    Avtomat. i Telemekh., 2014, no. 4,  67–80
  7. The Parker–Sochacki method for solving systems of ordinary differential equations using graphics processors

    Sib. Zh. Vychisl. Mat., 14:3 (2011),  277–289
  8. Fejer algorithms with an adaptive step

    Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011),  791–801
  9. The use of additional diminishing disturbances in Fejer models of iterative algorithms

    Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008),  2121–2128
  10. Projection onto polyhedra in outer representation

    Zh. Vychisl. Mat. Mat. Fiz., 48:3 (2008),  387–396
  11. A method of local convex majorants for solving variational-like inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 47:3 (2007),  355–363
  12. An accelerated parallel projection method for solving the minimum length problem

    Num. Meth. Prog., 7:3 (2006),  273–277
  13. A separating plane algorithm with limited memory for convex nonsmooth optimization

    Num. Meth. Prog., 7:1 (2006),  133–137
  14. Convergence of the suitable affine subspace method for finding the least distance to a simplex

    Zh. Vychisl. Mat. Mat. Fiz., 45:11 (2005),  1991–1999
  15. Portfolio replication: its forward-dual decomposition

    Avtomat. i Telemekh., 2004, no. 2,  170–178
  16. A parallel method of projection onto the convex hull of a family of sets

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 12,  78–82
  17. Numerical experiments in a new class of algorithms in linear programming

    Zh. Vychisl. Mat. Mat. Fiz., 27:3 (1987),  349–356
  18. A class of convex programming methods

    Zh. Vychisl. Mat. Mat. Fiz., 26:8 (1986),  1150–1159

  19. Автомобильные пробки: когда рациональность ведет к коллапсу

    Kvant, 2013, no. 1,  13–18
  20. Mathematical Programming: State of the Art

    Avtomat. i Telemekh., 2012, no. 2,  3–4


© Steklov Math. Inst. of RAS, 2026