|
|
Publications in Math-Net.Ru
-
A variant of the successive concessions method and its implementation based on cutting procedures
Trudy Inst. Mat. i Mekh. UrO RAN, 31:3 (2025), 138–149
-
A cutting-plane method with internal iteration points for the general convex programming problem
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:3 (2023), 208–218
-
A relaxed version of the cutting method with approximation of the constraint region
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:2 (2023), 143–152
-
A version of the penalty method with approximation of the epigraphs of auxiliary functions
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161:2 (2019), 263–273
-
Minimization method with approximation of constraint zone and epigraph of objective function
Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 11, 91–96
-
Cutting-plane method based on epigraph approximation with discarding the cutting planes
Avtomat. i Telemekh., 2015, no. 11, 76–88
-
A cutting method with updating approximating sets and its combination with other algorithms
Bulletin of Irkutsk State University. Series Mathematics, 10 (2014), 13–26
-
A cutting method and construction of mixed minimization algorithms on its basis
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:4 (2014), 14–24
-
One approach to constructing cutting algorithms with dropping of cutting planes
Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 3, 74–79
-
A cutting plane algorithm with an approximation of an epigraph
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:4 (2013), 48–54
-
A Cutting-Plane Method with Updating of Approximating Sets and Estimates of the Solution Accuracy
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:2 (2013), 54–64
-
On the several algorithms of immersion-severances for the problem of mathematical programming
Bulletin of Irkutsk State University. Series Mathematics, 4:2 (2011), 91–101
-
Relaxation algorithms for the conditional minimization of nonsmooth strictly pseudoconvex functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 12, 62–70
-
On the stability of algorithms for the unconditional minimization of pseudoconvex functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 12, 33–48
-
On an approach to the construction of algorithms for the unconditional minimization of pseudoconvex functions
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 12, 29–39
-
Second-order algorithm with parametrized directions for conditional optimization problems
Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 12, 62–72
-
A conditional minimization method with parametric specification of suitable directions
Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 12, 17–29
-
A variant of the parametrized method of centers
Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 12, 26–32
-
Algorithms with a combination of active gradients for finding a conditional minimax
Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 12, 52–58
-
On some descent methods with respect to groups of variables
Issled. Prikl. Mat., 19 (1992), 24–33
-
Methods of descent over groups of variables for a class of constrained minimization problems
Issled. Prikl. Mat., 18 (1992), 48–59
-
On the Realization of Some Methods Applied to Design Optimization Problems
Avtomat. i Telemekh., 1991, no. 1, 169–172
-
Minimization of a maximum function of a special kind
Issled. Prikl. Mat., 16 (1989), 101–108
-
Subgradient method to find the saddle point of a convex-concave function
Issled. Prikl. Mat., 15 (1988), 6–12
-
Subgradient relaxation method for minimization of strictly convex functions
Issled. Prikl. Mat., 14 (1987), 34–42
-
A variant of the constrained gradient method
Issled. Prikl. Mat., 11:1 (1984), 11–23
-
A gradient projection method on an embedding of the feasible set
Issled. Prikl. Mat., 11:1 (1984), 3–11
-
The method of the conditional $\varepsilon$-subgradient
Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 9, 22–26
-
Methods for the conditional minimization of functions with best paths of descent relative to the set
Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 7, 11–16
-
Choosing descent directions in unconstrained minimization problems
Issled. Prikl. Mat., 9 (1981), 37–42
-
Methods of unconditional minimization of functions using a simplex
Issled. Prikl. Mat., 7 (1979), 55–64
© , 2026