RUS  ENG
Full version
PEOPLE

Zabotin Igor Yarovlavich

Publications in Math-Net.Ru

  1. A variant of the successive concessions method and its implementation based on cutting procedures

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:3 (2025),  138–149
  2. A cutting-plane method with internal iteration points for the general convex programming problem

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:3 (2023),  208–218
  3. A relaxed version of the cutting method with approximation of the constraint region

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:2 (2023),  143–152
  4. A version of the penalty method with approximation of the epigraphs of auxiliary functions

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161:2 (2019),  263–273
  5. Minimization method with approximation of constraint zone and epigraph of objective function

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 11,  91–96
  6. Cutting-plane method based on epigraph approximation with discarding the cutting planes

    Avtomat. i Telemekh., 2015, no. 11,  76–88
  7. A cutting method with updating approximating sets and its combination with other algorithms

    Bulletin of Irkutsk State University. Series Mathematics, 10 (2014),  13–26
  8. A cutting method and construction of mixed minimization algorithms on its basis

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:4 (2014),  14–24
  9. One approach to constructing cutting algorithms with dropping of cutting planes

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 3,  74–79
  10. A cutting plane algorithm with an approximation of an epigraph

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:4 (2013),  48–54
  11. A Cutting-Plane Method with Updating of Approximating Sets and Estimates of the Solution Accuracy

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:2 (2013),  54–64
  12. On the several algorithms of immersion-severances for the problem of mathematical programming

    Bulletin of Irkutsk State University. Series Mathematics, 4:2 (2011),  91–101
  13. Relaxation algorithms for the conditional minimization of nonsmooth strictly pseudoconvex functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 12,  62–70
  14. On the stability of algorithms for the unconditional minimization of pseudoconvex functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 12,  33–48
  15. On an approach to the construction of algorithms for the unconditional minimization of pseudoconvex functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 12,  29–39
  16. Second-order algorithm with parametrized directions for conditional optimization problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 12,  62–72
  17. A conditional minimization method with parametric specification of suitable directions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 12,  17–29
  18. A variant of the parametrized method of centers

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 12,  26–32
  19. Algorithms with a combination of active gradients for finding a conditional minimax

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 12,  52–58
  20. On some descent methods with respect to groups of variables

    Issled. Prikl. Mat., 19 (1992),  24–33
  21. Methods of descent over groups of variables for a class of constrained minimization problems

    Issled. Prikl. Mat., 18 (1992),  48–59
  22. On the Realization of Some Methods Applied to Design Optimization Problems

    Avtomat. i Telemekh., 1991, no. 1,  169–172
  23. Minimization of a maximum function of a special kind

    Issled. Prikl. Mat., 16 (1989),  101–108
  24. Subgradient method to find the saddle point of a convex-concave function

    Issled. Prikl. Mat., 15 (1988),  6–12
  25. Subgradient relaxation method for minimization of strictly convex functions

    Issled. Prikl. Mat., 14 (1987),  34–42
  26. A variant of the constrained gradient method

    Issled. Prikl. Mat., 11:1 (1984),  11–23
  27. A gradient projection method on an embedding of the feasible set

    Issled. Prikl. Mat., 11:1 (1984),  3–11
  28. The method of the conditional $\varepsilon$-subgradient

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 9,  22–26
  29. Methods for the conditional minimization of functions with best paths of descent relative to the set

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 7,  11–16
  30. Choosing descent directions in unconstrained minimization problems

    Issled. Prikl. Mat., 9 (1981),  37–42
  31. Methods of unconditional minimization of functions using a simplex

    Issled. Prikl. Mat., 7 (1979),  55–64


© Steklov Math. Inst. of RAS, 2026