RUS  ENG
Full version
PEOPLE

Timergaliev Samat Nizametdinovich

Publications in Math-Net.Ru

  1. On the existence of solutions to nonlinear boundary value problems for non-flat isotropic shells of Timoshenko type in arbitrary curvilinear coordinates

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 3,  71–88
  2. On the problem of solvability of nonlinear boundary value problems for shallow isotropic shells of Timoshenko type in isometric coordinates

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 1,  50–68
  3. Solvability of nonlinear boundary value problems for non-sloping Timoshenko-type isotropic shells of zero principal curvature

    Ufimsk. Mat. Zh., 16:1 (2024),  81–98
  4. On the existence of solutions of nonlinear boundary value problems for nonshallow Timoshenko-type shells with free edges

    Sib. Zh. Ind. Mat., 26:4 (2023),  160–179
  5. On the existence of solutions to boundary value problems for nonlinear equilibrium equations of shallow anisotropic shells of Timoshenko type in Sobolev space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 4,  67–83
  6. On the problem of solvability of nonlinear boundary value problems for arbitrary isotropic shallow shells of the Timoshenko type with free edges

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 4,  90–107
  7. On existence of solutions of nonlinear equilibrium problems on shallow inhomogeneous anisotropic shells of the Timoshenko type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 8,  45–61
  8. On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 1,  76–85
  9. A method of integral equations in nonlinear boundary-value problems for flat shells of the Timoshenko type with free edges

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4,  59–75
  10. Solvability of one nonlinear boundary-value problem for a system of differential equations of the theory of shallow Timoshenko-type shells

    J. Sib. Fed. Univ. Math. Phys., 9:2 (2016),  131–143
  11. Solvability of geometrically nonlinear boundary-value problems for shallow shells of Timoshenko type with pivotally supported edges

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 5,  49–61
  12. On existence of solutions to geometrically nonlinear problems for shallow shells of the Timoshenko type with free edges

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 3,  40–56
  13. Solvability of geometrically nonlinear boundary-value problems for the Timoshenko-type anisotropic shells with rigidly clamped edges

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 8,  56–68
  14. Solvability of the boundary value problem for a partial quasilinear differential equation of the fourth order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 12,  52–57
  15. On Resolving Boundary Value Problems of Nonlinear Theory for Timoshenko Types Shallow Shells

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 150:1 (2008),  115–123
  16. On the uniqueness of the solution of boundary value problems of the nonlinear theory of thin shells

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 10,  62–69
  17. The Bubnov–Galerkin Method for the Approximate Solution of Boundary Value Problems of Nonlinear Theory of Thin Shells

    Differ. Uravn., 38:12 (2002),  1680–1689
  18. Variational Method Applied to Solvability of Boundary Value Problems in Geometrically Nonlinear Theory of Thin Shells

    Differ. Uravn., 38:4 (2002),  521–528
  19. Investigation of the solvability of variational problems in the nonlinear theory of thin shells

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 9,  66–74
  20. On a method for proving the solvability of a problem in the nonlinear theory of shallow shells

    Differ. Uravn., 34:10 (1998),  1412–1419
  21. On the solvability of a physically nonlinear problem in the theory of shallow shells under finite displacements

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 9,  70–80
  22. On the solvability of a geometrically nonlinear problem in the theory of shallow shells

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 7,  53–61
  23. A proof of the solvability of a problem in the nonlinear theory of shallow shells

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 9,  60–70
  24. The Tricomi problem in the case of a multiply connected domain

    Trudy Sem. Kraev. Zadacham, 24 (1990),  213–221
  25. The problem $T$ for the generalized Tricomi equation in a multiply connected domain

    Trudy Sem. Kraev. Zadacham, 23 (1987),  201–214


© Steklov Math. Inst. of RAS, 2026