RUS  ENG
Full version
PEOPLE

Simonov Pyotr Mikhailovich

Publications in Math-Net.Ru

  1. Numerical method for calculating the upper limit of a function and the highest Lyapunov exponent of linear differential systems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 186 (2020),  123–125
  2. A review of the methods of economic and mathematical modeling based on the principles of econophysics. Part 2

    Appl. Math. Control Sci., 2020, no. 2,  165–190
  3. A review of the methods of economic and mathematical modeling based on the principles of econophysics. Part 1

    Appl. Math. Control Sci., 2020, no. 1,  161–181
  4. On the stability of a system of two linear hybrid functional differential systems with aftereffect

    Russian Universities Reports. Mathematics, 25:131 (2020),  299–306
  5. Stability and asymptotically periodic solutions of hybrid systems with aftereffect

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 168 (2019),  91–98
  6. The theorem of Bohl-Perron on the asimptotic stability of hybrid systems and inverse theorem

    Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018),  726–737
  7. The Bohl–Perron theorem for hybrid linear systems with aftereffect

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017),  122–126
  8. The tests of the stability of one class of autonomous differential“pseudo-linear” equations of the first order with autoregulated delay

    Zhurnal SVMO, 19:2 (2017),  31–52
  9. Local homeomorphisms of Stone's compact and local convertibility measures mappings

    Zhurnal SVMO, 18:4 (2016),  64–75
  10. On the question of the theorem of Bohl — Perron of hybrid linear functional differential systems with aftereffect (HLFDSA)

    Zhurnal SVMO, 18:1 (2016),  75–81
  11. On the stability of linear hybrid functional differential systems

    Izv. IMI UdGU, 2015, no. 2(46),  184–192
  12. Scoring as a model of forming the optimal portfolio securities

    Zhurnal SVMO, 17:3 (2015),  95–99
  13. On nonlinear problems for functional differential equation

    Zhurnal SVMO, 17:1 (2015),  82–88
  14. Ограниченные на оси решения линейных систем дифференциальных уравнений ИТО

    Matem. Mod. Kraev. Zadachi, 3 (2010),  259–262
  15. Вычислительные проблемы в Бесселевской модели массовой кристаллизации

    Matem. Mod. Kraev. Zadachi, 2 (2009),  165–168
  16. Functional differential equations and their applications

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 1,  3–23
  17. Краевые задачи для разностных моделей

    Matem. Mod. Kraev. Zadachi, 3 (2008),  20–23
  18. Functional differential equations and their applications

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  87–90
  19. On a method of research of dynamic economic models

    Izv. IMI UdGU, 2006, no. 3(37),  137–138
  20. Stability of differential equations with aftereffect

    Izv. IMI UdGU, 2002, no. 2(25),  95–96
  21. Stability of equations with a retarded argument. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 4,  3–13
  22. On exponential stability of linear difference-differential systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 6,  37–49
  23. Stability of equations with delay

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 6,  3–16
  24. On the stability of functional-differential equations with respect to the first approximation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 10,  3–9
  25. The stability of linear systems with aftereffect. IV

    Differ. Uravn., 29:2 (1993),  196–204
  26. The stability of linear systems with aftereffect. III

    Differ. Uravn., 27:10 (1991),  1659–1668
  27. The stability of linear systems with aftereffect. II

    Differ. Uravn., 27:4 (1991),  555–562
  28. The stability of linear systems with aftereffect. I

    Differ. Uravn., 23:5 (1987),  745–754

  29. In memory of Terekhin Mihail Tihonovich

    Zhurnal SVMO, 23:1 (2021),  110–111
  30. To the eighty-fifth anniversary of Mikhail Tikhonovich Terekhin

    Zhurnal SVMO, 21:1 (2019),  114–115


© Steklov Math. Inst. of RAS, 2026