RUS  ENG
Full version
PEOPLE

Abrosimov Mikhail Borisovich

Publications in Math-Net.Ru

  1. On the minimum number of vertices and edges in a graph with prescribed connectivities

    Mat. Zametki, 118:6 (2025),  803–811
  2. Optimal graphs with a cut vertex and given edge connectivity

    Prikl. Diskr. Mat., 2025, no. 70,  65–71
  3. About the maximum number of vertices in primitive regular graphs with exponent equals $3$

    Prikl. Diskr. Mat., 2025, no. 67,  98–109
  4. On the structure of tournaments consisting of only kings

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  154–156
  5. Classification of trees whose maximal subtrees are all isomorphic

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  135–137
  6. Optimal Graphs with Prescribed Connectivities

    Mat. Zametki, 113:3 (2023),  323–331
  7. Vertex extensions of $4$-layer graphs and hypercubes

    Izv. Saratov Univ. Math. Mech. Inform., 22:4 (2022),  536–548
  8. About uniqueness of the minimal $1$-edge extension of hypercube $Q_4$

    Prikl. Diskr. Mat., 2022, no. 58,  84–93
  9. One family of optimal graphs with prescribed connectivities

    Prikl. Diskr. Mat. Suppl., 2022, no. 15,  116–119
  10. The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle

    Prikl. Diskr. Mat. Suppl., 2022, no. 15,  112–116
  11. About the uniqueness of the minimal $1$-edge extension of a hypercube

    Prikl. Diskr. Mat. Suppl., 2022, no. 15,  110–112
  12. Generation of colored graphs with isomorphism rejection

    Izv. Saratov Univ. Math. Mech. Inform., 21:2 (2021),  267–277
  13. The construction of all nonisomorphic minimum vertex extensions of the graph by the method of canonical representatives

    Izv. Saratov Univ. Math. Mech. Inform., 21:2 (2021),  238–245
  14. Finding minimal vertex extensions of a colored undirected graph

    University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 4,  106–117
  15. The maximum number of vertices of primitive regular graphs of orders $2, 3, 4$ with exponent $2$

    Prikl. Diskr. Mat., 2021, no. 52,  97–104
  16. Schemes for constructing minimal vertex $1$-extensions of complete bicolored graphs

    Prikl. Diskr. Mat. Suppl., 2021, no. 14,  165–168
  17. Regular vertex $1$-extension for $2$-dimension meshes

    Prikl. Diskr. Mat. Suppl., 2021, no. 14,  161–163
  18. The minimal vertex extensions for colored complete graphs

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:4 (2021),  77–89
  19. Construction of all minimal edge extensions of the graph with isomorphism rejection

    Izv. Saratov Univ. Math. Mech. Inform., 20:1 (2020),  105–115
  20. Constructing all nonisomorphic supergraphs with isomorphism rejection

    Prikl. Diskr. Mat., 2020, no. 48,  82–92
  21. On the optimality of graph implementations with prescribed connectivities

    Prikl. Diskr. Mat. Suppl., 2020, no. 13,  103–105
  22. Construction of all nonisomorphic minimal vertex extensions of the graph by the method of canonical representatives

    Izv. Saratov Univ. Math. Mech. Inform., 19:4 (2019),  479–486
  23. Comparison of sufficient degree based conditions for Hamiltonian graph

    Prikl. Diskr. Mat., 2019, no. 45,  55–63
  24. About a criterion of equality to 3 for exponent of regular primitive graph

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  182–185
  25. On the generation of minimal graph extensions by the method of canonical representatives

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  179–182
  26. About non-isomorphic graph colouring generating by Read–Faradzhev method

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  173–176
  27. On a Goodman–Hedetniemi sufficient condition for the graph Hamiltonicity

    Izv. Saratov Univ. Math. Mech. Inform., 18:3 (2018),  347–353
  28. About the maximum number of vertices in primitive regular graphs with exponent 3

    Prikl. Diskr. Mat. Suppl., 2018, no. 11,  112–114
  29. About minimal $1$-edge extension of hypercube

    Prikl. Diskr. Mat. Suppl., 2018, no. 11,  109–111
  30. On minimal vertex $1$-extensions of path orientation

    Prikl. Diskr. Mat., 2017, no. 38,  89–94
  31. About generation of non-isomorphic vertex $k$-colorings

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  136–138
  32. Upper and lower bounds of the number of additional arcs in a minimal edge $1$-extension of oriented path

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  134–136
  33. About primitive regular graphs with exponent 2

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  131–134
  34. Refinement of lower bounds for the number of additional arcs in a minimal vertex $1$-extension of oriented path

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  101–102
  35. Number estimation for additional arcs in a minimal $1$-vertex extension of tournament

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  111–113
  36. Characterization of graphs with a small number of additional arcs in a minimal $1$-vertex extension

    Izv. Saratov Univ. Math. Mech. Inform., 13:2(2) (2013),  3–9
  37. Characterization of graphs with three additional edges in a minimal $1$-vertex extension

    Prikl. Diskr. Mat., 2013, no. 3(21),  68–75
  38. About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path

    Prikl. Diskr. Mat. Suppl., 2013, no. 6,  71–72
  39. On the number of additional edges of a minimal vertex 1-extension of a starlike tree

    Izv. Saratov Univ. Math. Mech. Inform., 12:2 (2012),  103–113
  40. Characterization of graphs with a given number of additional edges in a minimal 1-vertex extension

    Prikl. Diskr. Mat., 2012, no. 1(15),  111–120
  41. On digraphs with a small number of arcs in a minimal $1$-vertex extension

    Prikl. Diskr. Mat. Suppl., 2012, no. 5,  86–88
  42. On the number of minimal vertex and edge $1$-extensions of cycles

    Prikl. Diskr. Mat. Suppl., 2012, no. 5,  84–86
  43. On a counterexample to a minimal vertex $1$-extension of starlike trees

    Prikl. Diskr. Mat. Suppl., 2012, no. 5,  83–84
  44. Minimal vertex extensions of directed stars

    Diskr. Mat., 23:2 (2011),  93–102
  45. On lower bound of edge number of minimal edge 1-extension of starlike tree

    Izv. Saratov Univ. Math. Mech. Inform., 11:3(2) (2011),  111–117
  46. On properties of minimal extensions of orgraphs

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  84–85
  47. On minimal edge 1-extensions of two special form trees

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  83–84
  48. On the uniqueness of exact vertex extensions

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  81–82
  49. Minimal extensions for cycles with vertices of two types

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  80–81
  50. Reliability analysis of graphical CAPTCHA-systems by the example of KCAPTCHA

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  40–41
  51. On minimal vertex 1-extensions of special type graph union

    Prikl. Diskr. Mat., 2011, no. 4(14),  34–41
  52. Minimal edge extensions of oriented and directed stars

    Prikl. Diskr. Mat., 2011, no. 2(12),  77–89
  53. On directed acyclic exact extensions

    Izv. Saratov Univ. Math. Mech. Inform., 10:1 (2010),  83–88
  54. On the Complexity of Some Problems Related to Graph Extensions

    Mat. Zametki, 88:5 (2010),  643–650
  55. On minimal vertex 1-extensions of special form superslim trees

    Prikl. Diskr. Mat., 2010, no. supplement № 3,  68–70
  56. On minimal edge $k$-extensions of oriented stars

    Prikl. Diskr. Mat., 2010, no. supplement № 3,  67–68
  57. Minimal edge extensions of some precomplete graphs

    Prikl. Diskr. Mat., 2010, no. 1(7),  105–117
  58. About reconstruction of small tournaments

    Izv. Saratov Univ. Math. Mech. Inform., 9:2 (2009),  94–98
  59. Computational complexity of graph extensions

    Prikl. Diskr. Mat., 2009, no. supplement № 1,  94–95
  60. Семейства точных расширений турниров

    Prikl. Diskr. Mat., 2008, no. 1(1),  101–107
  61. Some questions on minimal extensions of graphs

    Izv. Saratov Univ. Math. Mech. Inform., 6:1-2 (2006),  86–91
  62. Minimal $k$-extensions of precomplete graphs

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 6,  3–11

  63. On the number of optimal $1$-hamiltonian graphs with the number of vertices up to $26$ and $28$

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  103–105


© Steklov Math. Inst. of RAS, 2026