RUS  ENG
Full version
PEOPLE

Karchevskii Mikhail Mironovich

Publications in Math-Net.Ru

  1. A mesh method for solving fourth-order quasilinear elliptic equations

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161:3 (2019),  405–422
  2. On numerical methods for time-dependent eddy current problems for the Maxwell equations in inhomogeneous media

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:3 (2018),  477–494
  3. Mixed finite element method for nonclassical boundary value problems of shallow shell theory

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158:3 (2016),  322–335
  4. On boundary value problems for elliptic systems of second-order equations in divergence form

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:2 (2015),  93–103
  5. On the transmission problem for second-order quasilinear elliptic equations in divergence form

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:1 (2015),  44–50
  6. Investigation of solvability of the nonlinear equilibrium problem of a shallow unfixed shell

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:3 (2013),  105–110
  7. Mathematical Modeling of Dry Gas Dynamic Seals

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:2 (2013),  158–166
  8. On Error Estimates for a Variant of the Mixed Finite Element Method

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:2 (2013),  44–53
  9. A multigrid method for weakly nonlinear elliptic equations of the second order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 3,  10–19
  10. An iterative method for mixed finite element schemes

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 153:4 (2011),  5–10
  11. On convergence of multigrid method for elliptic equations of second order

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:3 (2009),  154–161
  12. Application of mixed schemes of the finite element method to the solution of problems of nonlinear filtration theory

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 8,  16–26
  13. Mixed finite element method for quasilinear degenerate elliptic equations.

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 147:3 (2005),  127–140
  14. On the method of integrating matrices for systems of ordinary differential equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 7,  18–26
  15. A mixed finite-element method for quasilinear degenerate fourth-order elliptic equations

    Differ. Uravn., 36:7 (2000),  946–952
  16. The finite element method for fourth-order quasilinear degenerate elliptic equations

    Differ. Uravn., 35:2 (1999),  232–237
  17. On a class of grid approximations for nonlinear problems in plate theory

    Zh. Vychisl. Mat. Mat. Fiz., 39:4 (1999),  670–680
  18. On the mixed finite element method in the nonlinear theory of thin shells

    Zh. Vychisl. Mat. Mat. Fiz., 38:2 (1998),  324–329
  19. On mathematical problems in the theory of multilayer shells with transversally soft fillings

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 4,  66–76
  20. On mixed finite element schemes for nonlinear problems in the theory of shells

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 1,  44–50
  21. On the solvability of geometrically nonlinear problems in the theory of thin shells

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 6,  30–36
  22. Variational problems in the theory of three-layer shallow shells

    Differ. Uravn., 30:7 (1994),  1217–1221
  23. Numerical modeling of the nonisothermic flow of nonlinear viscoelastic fluids

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 11,  9–16
  24. A mixed finite element method for nonlinear problems in the theory of plates

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 7,  12–19
  25. The method of fictitious domains for a geometrically and physically nonlinear problem of the bending of a shallow shell

    Issled. Prikl. Mat., 20 (1992),  35–50
  26. Solvability of variational problems in the nonlinear theory of shallow shells

    Differ. Uravn., 27:7 (1991),  1196–1203
  27. Convergence of an iterative process in a Banach space

    Issled. Prikl. Mat., 17 (1990),  3–15
  28. Solvability of the geometrically nonlinear bending problem for an open spherical shell

    Issled. Prikl. Mat., 15 (1988),  37–48
  29. Nonlinear problems of the theory of plates and shells and their difference approximation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 10,  17–30
  30. Difference methods for solving nonlinear problems of filtration theory

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 7,  28–45
  31. Some methods of solving the first boundary value problem for the biharmonic difference equation

    Zh. Vychisl. Mat. Mat. Fiz., 23:5 (1983),  1088–1097
  32. Application of the duality method to the solution of nonlinear problems of filtration theory with a limit gradient

    Differ. Uravn., 18:7 (1982),  1133–1144
  33. An iterative variable direction scheme for the solution of the plane problem of elasticity theory on a polar grid

    Issled. Prikl. Mat., 9 (1981),  3–8
  34. Difference method for solving a problem of heat exchange by radiation

    Differ. Uravn., 16:7 (1980),  1226–1234
  35. Iterative methods of solution of difference schemes for the heat-conduction equation with nonlinear boundary conditions

    Issled. Prikl. Mat., 8 (1980),  29–40
  36. Difference schemes for an equation of non-steady-state nonlinear filtration

    Differ. Uravn., 15:9 (1979),  1692–1706
  37. Investigation of a difference scheme for a nonlinear stationary problem of filtration theory

    Issled. Prikl. Mat., 6 (1979),  23–31
  38. The variational method for equations with monotone discontinuous operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 11,  63–69
  39. The approximation of the strain tensor in curvilinear coordinates. A difference scheme for the problem of the equilibrium of an elastic cylinder

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 10,  70–80
  40. A difference scheme for the problem of the strong bending of thin plates

    Zh. Vychisl. Mat. Mat. Fiz., 17:1 (1977),  183–195
  41. A difference scheme for the mixed boundary-value problem of strong bending of shallow shells

    Issled. Prikl. Mat., 5 (1976),  32–52
  42. The solution of certain nonlinear problems of filtration theory

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 6,  73–81
  43. Difference schemes for quasilinear elliptic equations with discontinuous coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 5,  128–137
  44. A study of nonlinear problems of filtration theory

    Trudy Sem. Kraev. Zadacham, 11 (1974),  64–72
  45. The stable iteration methods for the solution of problems of Neumann type

    Zh. Vychisl. Mat. Mat. Fiz., 14:1 (1974),  254–259
  46. Difference schemes for nonlinear multidimensional elliptic equations. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 3,  44–52
  47. Difference schemes for nonlinear multidimensional elliptic equations. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 11,  23–31
  48. Efficient difference schemes for quasilinear parabolic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 3,  23–31
  49. Iteration schemes for equations with monotone operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 5,  32–37
  50. Difference schemes for quasilinear elliptic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 9,  48–58
  51. An investigation of a certain class of nonlinear difference schemes

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 7,  63–71
  52. The convergence of the method of straight lines for fourth order elliptic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 4,  24–27
  53. Investigation of difference schemes for nonlinear equations with the help of a variational method

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 3,  59–65
  54. Investigating the method of straight lines for non-linear elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 7:3 (1967),  677–680


© Steklov Math. Inst. of RAS, 2026