RUS  ENG
Full version
PEOPLE

Solev Valentin Nikolaevich

Publications in Math-Net.Ru

  1. Ñonjugate system and accuracy in the estimation problem

    Zap. Nauchn. Sem. POMI, 544 (2025),  314–328
  2. Approximation of spectral density and accuracy in the estimation problem

    Zap. Nauchn. Sem. POMI, 535 (2024),  255–268
  3. BMO space and the problem of estimating a function in stationary noise

    Zap. Nauchn. Sem. POMI, 526 (2023),  193–206
  4. Comparison of projector operators in the weighted space

    Zap. Nauchn. Sem. POMI, 515 (2022),  189–198
  5. The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise

    Zap. Nauchn. Sem. POMI, 505 (2021),  282–293
  6. Estimation of a function in a Gaussian stationary noise

    Zap. Nauchn. Sem. POMI, 495 (2020),  277–290
  7. Estimation of a vector valued function in a Gaussian stationary noise

    Zap. Nauchn. Sem. POMI, 486 (2019),  275–285
  8. Estimation of function in Gaussian stationary noise: new spectral condition

    Zap. Nauchn. Sem. POMI, 474 (2018),  222–232
  9. A local version of the Muckenhoupt condition and the accuracy of estimation of the unknown pseudo periodic function in stationary noise

    Zap. Nauchn. Sem. POMI, 466 (2017),  289–299
  10. Adaptive estimation of function observed in Gaussian stationary noise

    Zap. Nauchn. Sem. POMI, 454 (2016),  261–275
  11. Estimation of function observed in stationary noise: discretization

    Zap. Nauchn. Sem. POMI, 441 (2015),  286–298
  12. Mackenhoupt condition and an estimating problem

    Zap. Nauchn. Sem. POMI, 431 (2014),  186–197
  13. Estumation of density on indirect observation

    Zap. Nauchn. Sem. POMI, 396 (2011),  204–212
  14. Maximum likelihood estimator: the nonparametric approach

    Zap. Nauchn. Sem. POMI, 341 (2007),  220–228
  15. Minimum distance estimators

    Zap. Nauchn. Sem. POMI, 339 (2006),  151–162
  16. Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence

    Zap. Nauchn. Sem. POMI, 328 (2005),  221–229
  17. Estimation in a model with infinite dimensional nuisance parameter

    Zap. Nauchn. Sem. POMI, 320 (2004),  160–165
  18. Conditions of the local asymptotic normality for Gaussian stationary random processes

    Zap. Nauchn. Sem. POMI, 278 (2001),  225–247
  19. Prediction problems and Hunt–Muckenhoupt–Wheeden condition

    Zap. Nauchn. Sem. POMI, 260 (1999),  73–83
  20. The estimation of a function being observed with a stationary error

    Zap. Nauchn. Sem. POMI, 244 (1997),  271–284
  21. The accuracy of the least square method

    Zap. Nauchn. Sem. POMI, 228 (1996),  294–299
  22. The problem of compensation

    Zap. Nauchn. Sem. POMI, 216 (1994),  144–152
  23. On a condition of local regularity

    Zap. Nauchn. Sem. LOMI, 194 (1992),  141–149
  24. The operator of canonical correlation and relatively regular processes

    Zap. Nauchn. Sem. LOMI, 177 (1989),  145–147
  25. The condition of mutual absolute continuity of two Gaussian measures corresponding to a stationary process and asymptotic behaviour of the reproducing kernel

    Zap. Nauchn. Sem. LOMI, 166 (1988),  164–166
  26. A basic condition for the stationary vector sequence

    Zap. Nauchn. Sem. LOMI, 153 (1986),  138–152
  27. A condition for the mutual absolute continuity of Gaussian measures, generated by a stationary process

    Zap. Nauchn. Sem. LOMI, 142 (1985),  160–163
  28. Gaussian $f$-regular processes and asymptotic behavior of likelihood function

    Zap. Nauchn. Sem. LOMI, 119 (1982),  203–217
  29. Approximation of a reproducing kernel

    Zap. Nauchn. Sem. LOMI, 97 (1980),  195–198
  30. 2.3. Analytic problems of the theory of stochastic processes

    Zap. Nauchn. Sem. LOMI, 81 (1978),  70–72
  31. Aproximation of gaussian measures generated by statinary processes and smoothly dependeted of parameter

    Zap. Nauchn. Sem. LOMI, 79 (1978),  44–66
  32. Conditionally regular processes

    Zap. Nauchn. Sem. LOMI, 72 (1977),  140–149
  33. The information in the additive-nois scheme

    Zap. Nauchn. Sem. LOMI, 55 (1976),  117–127
  34. Third order spectral measure for a stationary process

    Dokl. Akad. Nauk SSSR, 224:3 (1975),  546–548
  35. On a continuous analogue of a Szegő theorem

    Zap. Nauchn. Sem. LOMI, 39 (1974),  104–109
  36. The absolute regularity condition for fields

    Zap. Nauchn. Sem. LOMI, 29 (1972),  27–29
  37. The average over a unit of time of the amount of information contained in one stationary Gaussian process with respect to another

    Zap. Nauchn. Sem. LOMI, 29 (1972),  18–26
  38. Absolutely regular trajectories in the Hilbert space

    Zap. Nauchn. Sem. LOMI, 22 (1971),  139–160
  39. A condition for the regularity of a Gaussian stationary process

    Dokl. Akad. Nauk SSSR, 185:3 (1969),  509–512
  40. The asymptotics of the prediction error in the multi-dimensional case

    Dokl. Akad. Nauk SSSR, 185:1 (1969),  43–46
  41. Asymptotic, behavior of the prediction error in multidimensional case

    Zap. Nauchn. Sem. LOMI, 12 (1969),  146–156
  42. On a condition of linear regularity of stationary vector-valued sequence

    Zap. Nauchn. Sem. LOMI, 12 (1969),  126–145
  43. On a condition of regularity of the gaussian stationary sequence

    Zap. Nauchn. Sem. LOMI, 12 (1969),  113–125
  44. The asymptotic behavior of the prediction error of a stationary sequence with a spectral density of special type

    Teor. Veroyatnost. i Primenen., 13:4 (1968),  746–750

  45. In memory of M. S. Nikulin

    Zap. Nauchn. Sem. POMI, 495 (2020),  7–8


© Steklov Math. Inst. of RAS, 2026