RUS  ENG
Full version
PEOPLE

Egorov Vladimir Alekseevich

Publications in Math-Net.Ru

  1. Two-sided estimates for the constants in Marcinkiewicz's inequalities

    Zap. Nauchn. Sem. POMI, 361 (2008),  45–56
  2. Estimation of constants for the right-hand inequalities of Marcinkiewicz and Rosenthal

    Zap. Nauchn. Sem. POMI, 341 (2007),  115–123
  3. An estimate of the tail of the destribution for normolized and self-normolized sums

    Zap. Nauchn. Sem. POMI, 294 (2002),  77–87
  4. Functional law of the iterated logarithm for truncated sums

    Zap. Nauchn. Sem. POMI, 244 (1997),  126–142
  5. On functional law of the iterated logarithm for trimmed sums

    Zap. Nauchn. Sem. POMI, 244 (1997),  119–125
  6. On the asymptotic behavior of self-normalized sums of random variables

    Teor. Veroyatnost. i Primenen., 41:3 (1996),  643–650
  7. Dependence of the growth rate of a martingale on the growth rate of martingale differences

    Teor. Veroyatnost. i Primenen., 41:1 (1996),  192–199
  8. On the strong law of large numbers and the law of the iterated logarithm for martingales and sums of independent random variables

    Teor. Veroyatnost. i Primenen., 35:4 (1990),  691–703
  9. On the influence of extremal order statistics on the rate of increase of sums

    Teor. Veroyatnost. i Primenen., 35:3 (1990),  566–570
  10. A functional law of the iterated logarithm for ordered sums

    Teor. Veroyatnost. i Primenen., 35:2 (1990),  343–349
  11. On the occupation time distribution

    Zap. Nauchn. Sem. LOMI, 177 (1989),  51–54
  12. On the strong law of large numbers for the middle part of a sample

    Zap. Nauchn. Sem. LOMI, 166 (1988),  25–31
  13. The law of iterated logarithm for quadratic variations

    Zap. Nauchn. Sem. LOMI, 158 (1987),  72–80
  14. The central limit theorem under the absence of extremal absolute order statistics

    Zap. Nauchn. Sem. LOMI, 142 (1985),  59–67
  15. On a method of proving of theorems on the law of the iterated logarithm

    Teor. Veroyatnost. i Primenen., 29:1 (1984),  125–132
  16. On asymptotic quadratic variation behaviour for trajectories of processes with independent increments

    Zap. Nauchn. Sem. LOMI, 130 (1983),  78–88
  17. Some theorems for induced order statistics

    Teor. Veroyatnost. i Primenen., 27:3 (1982),  592–599
  18. On connection berween the law of large numbers for squares and the law of iterated logarithm

    Zap. Nauchn. Sem. LOMI, 119 (1982),  87–92
  19. On the convergence rate for sums of induced order statistics to the normal law

    Zap. Nauchn. Sem. LOMI, 108 (1981),  45–56
  20. On the rate of convergence to the stable law

    Teor. Veroyatnost. i Primenen., 25:1 (1980),  183–190
  21. Rate of convergence of the joint distribution of order statistics to the normal law

    Zap. Nauchn. Sem. LOMI, 72 (1977),  75–83
  22. On the rate of convergence of sums of order statistics to the normal law. II

    Zap. Nauchn. Sem. LOMI, 55 (1976),  165–174
  23. On the rate of convergence of linear combinations of absolute order statistics to the normal law

    Teor. Veroyatnost. i Primenen., 20:1 (1975),  207–215
  24. On the rate of convergence of sums of order statistics to the normal law

    Zap. Nauchn. Sem. LOMI, 41 (1974),  105–128
  25. On the rate of convergence to the normal law equivalent to the existence of the second moment

    Teor. Veroyatnost. i Primenen., 18:1 (1973),  180–185
  26. Some Theorems on the Strong Law of Large Numbers and Law of the Iterated Logarithm

    Teor. Veroyatnost. i Primenen., 17:1 (1972),  84–98
  27. Several theorems on the strong law of large numbers and the law of the iterated logarithm

    Dokl. Akad. Nauk SSSR, 193:2 (1970),  268–271
  28. On the strong law of large numbers and the law of the iterated logarithm for a sequence of independent random variables

    Teor. Veroyatnost. i Primenen., 15:3 (1970),  520–527
  29. On the law of the iterated logarithm

    Teor. Veroyatnost. i Primenen., 14:4 (1969),  722–729


© Steklov Math. Inst. of RAS, 2026