RUS  ENG
Full version
PEOPLE

Stolyarov Aleksey Vasil'evich

Publications in Math-Net.Ru

  1. Internal geometry of hypersurfaces in projectively metric space

    Fundam. Prikl. Mat., 16:2 (2010),  103–114
  2. Dual Riemannian spaces of constant curvature on a normalized hypersurface

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 11,  63–73
  3. Connections on a Hypersurface in a Projectively Metric Space

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:4 (2009),  160–170
  4. An affine-metrically connected space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 9,  71–82
  5. A space with conformal connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 11,  42–54
  6. Conformal differential geometry of planar orthogonal nets

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 10,  61–70
  7. A space with a projective-metric connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 11,  70–76
  8. Intrinsic geometry of a normed conformal space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 11,  61–70
  9. Riggings and affine connections on distributions of a conformal space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 5,  52–60
  10. Linear connections on distributions of a conformal space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 3,  60–72
  11. Dual affine connections on a regular hyperband

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 9,  55–63
  12. Dual normal connections on a regular hyperstrip

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 9,  72–75
  13. Nets on manifolds

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 12 (1981),  97–125
  14. The dual theory of regular distributions of hyperplane elements in a space with projective connection. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 3,  84–87
  15. The dual theory of regular distributions of hyperplane elements in a space with projective connection. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 1,  79–82
  16. Differential geometry of bands

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 10 (1978),  25–54
  17. Dual linear connections on framed manifolds in a space with projective connection

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 8 (1977),  25–46
  18. The dual geometry of nets on a regular hyperband

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 8,  68–78
  19. Application of the theory of regular hyperbands to the study of the geometry of multidimensional surfaces in a projective space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 2,  111–113
  20. The projective differential geometry of a regular hyperband distribution of $m$-dimensional line elements

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 7 (1975),  117–151
  21. Conditions for a regular hyperband to be quadratic

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 11,  106–108
  22. The fundamental objects of a regular hyperband

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 10,  97–99
  23. The dual geometry of plane multidimensional nets

    Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 7,  92–102
  24. The dual geometry of nets, and polar-conjugate configurations on a hypersurface

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 4,  109–119
  25. The intrinsic geometry of multidimensional surfaces that carry a projective-Chebyshev net

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 11,  99–103
  26. The networks and polar conjugate configurations on the hypersurfaces of a projective space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 7,  96–101
  27. Nets that have coincident pseudofoci and are given on the hypersurfaces of projective space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 2,  86–93
  28. The intrinsic geometry of two classes of plane multidimensional nets in projective space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 8,  104–111


© Steklov Math. Inst. of RAS, 2026