|
|
Publications in Math-Net.Ru
-
The existence of root subgroup translated by a given element into its opposite. II
Zap. Nauchn. Sem. POMI, 531 (2024), 147–151
-
Orbits of vectors in some representations. III
Zap. Nauchn. Sem. POMI, 522 (2023), 152–163
-
Orbits of vectors in some representations. II
Zap. Nauchn. Sem. POMI, 522 (2023), 125–151
-
Orbits of vectors in some representations
Zap. Nauchn. Sem. POMI, 484 (2019), 149–164
-
The existence of root subgroup translated by a given element into its opposite
Zap. Nauchn. Sem. POMI, 460 (2017), 190–202
-
Width of extraspecial unipotent radical with respect to root elements
Zap. Nauchn. Sem. POMI, 435 (2015), 168–177
-
Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements
Zap. Nauchn. Sem. POMI, 423 (2014), 183–204
-
Width of groups of type $\mathrm E_6$ with respect to root elements. I
Algebra i Analiz, 23:5 (2011), 155–198
-
The geometry of root elements in groups of type $\mathrm E_6$
Algebra i Analiz, 23:3 (2011), 261–309
-
Width of groups of type $\mathrm E_6$ with respect to root elements. II
Zap. Nauchn. Sem. POMI, 386 (2011), 242–264
-
Triples of long root subgroups
Zap. Nauchn. Sem. POMI, 343 (2007), 54–83
-
Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation
Zap. Nauchn. Sem. POMI, 338 (2006), 5–68
-
Private life of $\mathrm{GL}(5,\mathbb Z)$
Zap. Nauchn. Sem. POMI, 305 (2003), 153–162
© , 2026