RUS  ENG
Full version
PEOPLE

Chistov Alexander Leonidovich

Publications in Math-Net.Ru

  1. Complexity of constructing the roots of a polynomial in the field of multiple formal fractional power series in zero characteristic

    Zap. Nauchn. Sem. POMI, 543 (2025),  191–221
  2. An algorithm for factoring polynomials in the ring of multivariable formal power series in zero–characteristic. II

    Zap. Nauchn. Sem. POMI, 528 (2023),  261–290
  3. An algorithm for factoring polynomials in the ring of multivariable formal power series in zero–characteristic

    Zap. Nauchn. Sem. POMI, 517 (2022),  268–290
  4. An efficient algorithm for testing the solvability for a system of polynomial equations over $p$-adic integers

    Algebra i Analiz, 33:6 (2021),  162–196
  5. An effective construction of a small number of equations defining an algebraic variety

    Zap. Nauchn. Sem. POMI, 507 (2021),  140–156
  6. Subexponential-time computation of isolated primary components of a polynomial ideal

    Zap. Nauchn. Sem. POMI, 498 (2020),  64–74
  7. Efficient estimation of roots from the field of fractional power series of a given polynomial in nonzero characteristic

    Zap. Nauchn. Sem. POMI, 498 (2020),  55–63
  8. Systems with parameters, or efficiently solving systems of polynomial equations 33 years later

    Zap. Nauchn. Sem. POMI, 481 (2019),  146–177
  9. Systems with parameters, or efficiently solving systems of polynomial equations: 33 years later. II

    Zap. Nauchn. Sem. POMI, 468 (2018),  138–176
  10. Systems with parameters, or efficiently solving systems of polynomial equations: 33 years later. I

    Zap. Nauchn. Sem. POMI, 462 (2017),  122–166
  11. Extension of the Newton–Puiseux algorithm to the case of a nonzero characteristic ground field. I

    Algebra i Analiz, 28:6 (2016),  147–188
  12. Efficient absolute factorization of polynomials with parametric coefficients

    Zap. Nauchn. Sem. POMI, 448 (2016),  286–325
  13. Computations with parameters: a theoretical background

    Zap. Nauchn. Sem. POMI, 436 (2015),  219–239
  14. A deterministic polynomial-time algorithm for the first Bertini theorem. III

    Zap. Nauchn. Sem. POMI, 432 (2015),  297–323
  15. A deterministic polynomial-time algorithm for the first Bertini theorem. II

    Zap. Nauchn. Sem. POMI, 421 (2014),  214–249
  16. A deterministic polynomial-time algorithm for the first Bertini theorem. I

    Zap. Nauchn. Sem. POMI, 411 (2013),  191–239
  17. Estimating the power of a system of equations that determines a variety of reducible polynomials

    Algebra i Analiz, 24:3 (2012),  199–222
  18. An effective version of the first Bertini theorem in nonzero characteristic and its applications

    Zap. Nauchn. Sem. POMI, 403 (2012),  172–196
  19. An improvement of the complexity bound for solving systems of polynomial equations

    Zap. Nauchn. Sem. POMI, 390 (2011),  299–306
  20. Effective construction of a nonsingular in codimension one algebraic variety over a zero-characteristic ground field

    Zap. Nauchn. Sem. POMI, 387 (2011),  167–188
  21. Polynomial-time algorithms for a new model of representation of algebraic varieties (in characteristic zero)

    Zap. Nauchn. Sem. POMI, 378 (2010),  133–170
  22. Эффективная нормализация неособого в коразмерности один алгебраического многообразия

    Dokl. Akad. Nauk, 427:5 (2009),  605–608
  23. An overview of effective normalization of a nonsingular in codimension one projective algebraic variety

    Zap. Nauchn. Sem. POMI, 373 (2009),  295–317
  24. Double-exponential lower bound for the degree of any system of generators of a polynomial prime ideal

    Algebra i Analiz, 20:6 (2008),  186–213
  25. Complexity of the Standard Basis of a $D$-Module

    Algebra i Analiz, 20:5 (2008),  41–82
  26. Polynomial-time computation of the degree of a dominant morphism in zero characteristic. IV

    Zap. Nauchn. Sem. POMI, 360 (2008),  260–294
  27. Inequalities for Hilbert functions and primary decompositions

    Algebra i Analiz, 19:6 (2007),  143–172
  28. Polynomial-time computation of the degree of a dominant morphism in zero characteristic. III

    Zap. Nauchn. Sem. POMI, 344 (2007),  203–239
  29. Efficient construction of local parameters of irreducible components of an algebraic variety in nonzero characteristic

    Zap. Nauchn. Sem. POMI, 326 (2005),  248–278
  30. Polynomial-time computation of the degree of a dominant morphism in zero characteristic. II

    Zap. Nauchn. Sem. POMI, 325 (2005),  181–224
  31. Polynomial-time computation of the degree of a dominant morphism in characteristic zero. I

    Zap. Nauchn. Sem. POMI, 307 (2004),  189–235
  32. Monodromy and irreducibility criteria with algorithmic applications in zero characteristic

    Zap. Nauchn. Sem. POMI, 292 (2002),  130–152
  33. Efficient smooth stratification of an algebraic variety in zero characteristic and its applications

    Zap. Nauchn. Sem. POMI, 266 (2000),  254–311
  34. Polynomial-time computation of degrees of algebraic varieties in zero-characteristic and its applications

    Zap. Nauchn. Sem. POMI, 258 (1999),  7–59
  35. Strong version of the basic deciding algorithm for the existential theory of real fields

    Zap. Nauchn. Sem. POMI, 256 (1999),  168–211
  36. Polynomial-time factoring polynomials over local fields

    Zap. Nauchn. Sem. LOMI, 192 (1991),  112–148
  37. The complexity of the construction of the ring of integers of a global field

    Dokl. Akad. Nauk SSSR, 306:5 (1989),  1063–1067
  38. Polynomial-time algorithms for computational problems in the theory of algebraic curves

    Zap. Nauchn. Sem. LOMI, 176 (1989),  127–150
  39. Efficient factorization of polynomials over local fields

    Dokl. Akad. Nauk SSSR, 293:5 (1987),  1073–1077
  40. Fast factorization of polynomials into irreducible ones and the solution of systems of algebraic equations

    Dokl. Akad. Nauk SSSR, 275:6 (1984),  1302–1306
  41. Polynomial-time factoring of polynomials and finding the compounds of a variety within the aubexponential time

    Zap. Nauchn. Sem. LOMI, 137 (1984),  124–188
  42. On the number of generators of a semigroup of classes of algebraic tori relative to stable equivalence

    Dokl. Akad. Nauk SSSR, 242:5 (1978),  1027–1029
  43. Rationality of a class of tori

    Trudy Mat. Inst. Steklov., 148 (1978),  27–29
  44. Birational equivalence of tori with a cyclic splitting field

    Zap. Nauchn. Sem. LOMI, 64 (1976),  153–158


© Steklov Math. Inst. of RAS, 2026