RUS  ENG
Full version
PEOPLE

Krys'ko Vadim Anatolievich

Publications in Math-Net.Ru

  1. Variational iteration method for investigating flexible porous functionally graded size-dependent oblique plates

    Izv. Saratov Univ. Math. Mech. Inform., 25:4 (2025),  524–533
  2. Nonlinear statics and dynamics of porous functional-gradient nanobeam taking into account transverse shifts

    Izv. Saratov Univ. Math. Mech. Inform., 24:4 (2024),  587–597
  3. Mathematical models of nonlinear dynamics of functionally graded nano/micro/macro-scale porous closed cylindrical Kirchhoff–Love shells

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:1 (2024),  96–116
  4. Elastic-plastic deformation of nanoplates. The method of variational iterations (extended Kantorovich method)

    Izv. Saratov Univ. Math. Mech. Inform., 22:4 (2022),  494–505
  5. Features of complex vibrations of flexible micropolar mesh panels

    Izv. Saratov Univ. Math. Mech. Inform., 21:1 (2021),  48–59
  6. Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift

    Izv. Saratov Univ. Math. Mech. Inform., 19:3 (2019),  305–316
  7. The contact interaction of two Timoshenko beams

    Nelin. Dinam., 13:1 (2017),  41–53
  8. Complex oscillations of flexible plates under longitudinal loads with account for white noise

    Prikl. Mekh. Tekh. Fiz., 57:4 (2016),  163–169
  9. Scenarios of transition from harmonic nonlinear oscillations in chaotic beams Timoshenko type

    Meždunar. nauč.-issled. žurn., 2014, no. 3(22),  26–29
  10. Contact interaction of the geometry and construction nonlinear non soldered Euler-Bernoulli beams system

    Meždunar. nauč.-issled. žurn., 2014, no. 3(22),  23–26
  11. Complex oscillation of the Euler-Bernoulli beams with regard geometrically and physically nonlinear

    Meždunar. nauč.-issled. žurn., 2014, no. 3(22),  14–16
  12. Chaotic phase synchronization of vibrations of multilayer beam structures

    Prikl. Mekh. Tekh. Fiz., 53:3 (2012),  166–175
  13. Effect of transverse shears on complex nonlinear vibrations of elastic beams

    Prikl. Mekh. Tekh. Fiz., 52:5 (2011),  186–193
  14. Reduction of generalized S. P. Timoshenko equations to a differential operator equation of hyperbolic type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 2,  72–74
  15. Исследование хаотических колебаний прямоугольных пластинок в температурном поле

    Matem. Mod. Kraev. Zadachi, 1 (2006),  127–128
  16. On the spectrum of operators associated with uniformly well-posed problems

    Differ. Uravn., 40:10 (2004),  1417–1418
  17. A mixed variational formulation of the problem of a plate freely supported on a curvilinear contour

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 3,  57–63
  18. Сценарий перехода в хаос гибкой балки при действии знакопеременной поперечной нагрузки

    Matem. Mod. Kraev. Zadachi, 1 (2004),  129–131
  19. On the existence and uniqueness of the solution of the Cauchy problem for operator-differential equations of mixed type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 10,  3–8
  20. Operator approach to a geometrically nonlinear problem of static stability of plates and shells

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 2,  40–46
  21. The rate of convergence of the Bubnov–Galerkin method for hyperbolic equations

    Differ. Uravn., 26:2 (1990),  323–333
  22. The rate of convergence of the Rothe–Galerkin method for a nonclassical system of differential equations

    Differ. Uravn., 25:7 (1989),  1208–1219
  23. Symmetrization of a hyperbolic equation

    Differ. Uravn., 25:4 (1989),  652–659
  24. Symmetrization of an operator of a boundary value problem for a hyperbolic equation

    Differ. Uravn., 25:3 (1989),  523–525
  25. 65N99 Some iterative algorithms for solving equations of von Kármán type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 9,  5–14
  26. Rate of convergence of the Bubnov–Galerkin method for a nonclassical system of differential equations

    Differ. Uravn., 23:8 (1987),  1407–1416
  27. Allowance for conditions of consistency in the solution of a three-dimensional problem of thermoelasticity for a plate

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 12,  63–66
  28. The existence of a solution to a nonlinear connected problem of thermoelasticity

    Differ. Uravn., 20:9 (1984),  1583–1588
  29. On the existence of a solution in problems of nonlinear vibrations of shallow shells with rotational inertia taken into account

    Differ. Uravn., 20:5 (1984),  830–838
  30. Some features of problems of synthesis of shells in a plan by dynamic characteristics

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 5,  48–52
  31. Solution of physically nonlinear problems of the theory of plates and shells, rectangular in the design, by the method of variational iterations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 5,  78–80
  32. On the question of the solution of nonlinear boundary value problems by the Kantorovich–Vlasov method

    Differ. Uravn., 16:12 (1980),  2186–2189
  33. Нелинейные колебания прямоугольных оболочек на базе обобщенной модели С. П. Тимошенко

    Issled. Teor. Plastin i Obolochek, 11 (1975),  360–363
  34. О сходимости метода Канторовича–Власова при исследовании нелинейных собственных колебаний прямоугольных пластин и оболочек

    Issled. Teor. Plastin i Obolochek, 11 (1975),  279–288


© Steklov Math. Inst. of RAS, 2026