|
|
Publications in Math-Net.Ru
-
Variational iteration method for investigating flexible porous functionally graded size-dependent oblique plates
Izv. Saratov Univ. Math. Mech. Inform., 25:4 (2025), 524–533
-
Nonlinear statics and dynamics of porous functional-gradient nanobeam taking into account transverse shifts
Izv. Saratov Univ. Math. Mech. Inform., 24:4 (2024), 587–597
-
Mathematical models of nonlinear dynamics of functionally graded nano/micro/macro-scale porous closed cylindrical Kirchhoff–Love shells
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:1 (2024), 96–116
-
Elastic-plastic deformation of nanoplates. The method of variational iterations (extended Kantorovich method)
Izv. Saratov Univ. Math. Mech. Inform., 22:4 (2022), 494–505
-
Features of complex vibrations of flexible micropolar mesh panels
Izv. Saratov Univ. Math. Mech. Inform., 21:1 (2021), 48–59
-
Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift
Izv. Saratov Univ. Math. Mech. Inform., 19:3 (2019), 305–316
-
The contact interaction of two Timoshenko beams
Nelin. Dinam., 13:1 (2017), 41–53
-
Complex oscillations of flexible plates under longitudinal loads with account for white noise
Prikl. Mekh. Tekh. Fiz., 57:4 (2016), 163–169
-
Scenarios of transition from harmonic nonlinear oscillations in chaotic beams Timoshenko type
Meždunar. nauč.-issled. žurn., 2014, no. 3(22), 26–29
-
Contact interaction of the geometry and construction nonlinear non soldered Euler-Bernoulli beams system
Meždunar. nauč.-issled. žurn., 2014, no. 3(22), 23–26
-
Complex oscillation of the Euler-Bernoulli beams with regard geometrically and physically nonlinear
Meždunar. nauč.-issled. žurn., 2014, no. 3(22), 14–16
-
Chaotic phase synchronization of vibrations of multilayer beam structures
Prikl. Mekh. Tekh. Fiz., 53:3 (2012), 166–175
-
Effect of transverse shears on complex nonlinear vibrations of elastic beams
Prikl. Mekh. Tekh. Fiz., 52:5 (2011), 186–193
-
Reduction of generalized S. P. Timoshenko equations to a differential operator equation of hyperbolic type
Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 2, 72–74
-
Исследование хаотических колебаний прямоугольных пластинок в температурном поле
Matem. Mod. Kraev. Zadachi, 1 (2006), 127–128
-
On the spectrum of operators associated with uniformly well-posed problems
Differ. Uravn., 40:10 (2004), 1417–1418
-
A mixed variational formulation of the problem of a plate freely supported on a curvilinear contour
Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 3, 57–63
-
Сценарий перехода в хаос гибкой балки при действии знакопеременной поперечной нагрузки
Matem. Mod. Kraev. Zadachi, 1 (2004), 129–131
-
On the existence and uniqueness of the solution of the Cauchy problem for operator-differential equations of mixed type
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 10, 3–8
-
Operator approach to a geometrically nonlinear problem of static stability of plates and shells
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 2, 40–46
-
The rate of convergence of the Bubnov–Galerkin method for hyperbolic equations
Differ. Uravn., 26:2 (1990), 323–333
-
The rate of convergence of the Rothe–Galerkin method for a nonclassical system of differential equations
Differ. Uravn., 25:7 (1989), 1208–1219
-
Symmetrization of a hyperbolic equation
Differ. Uravn., 25:4 (1989), 652–659
-
Symmetrization of an operator of a boundary value problem for a hyperbolic equation
Differ. Uravn., 25:3 (1989), 523–525
-
65N99 Some iterative algorithms for solving equations of von Kármán type
Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 9, 5–14
-
Rate of convergence of the Bubnov–Galerkin method for a nonclassical system of differential equations
Differ. Uravn., 23:8 (1987), 1407–1416
-
Allowance for conditions of consistency in the solution of a three-dimensional problem of thermoelasticity for a plate
Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 12, 63–66
-
The existence of a solution to a nonlinear connected problem of thermoelasticity
Differ. Uravn., 20:9 (1984), 1583–1588
-
On the existence of a solution in problems of nonlinear vibrations of shallow shells with rotational inertia taken into account
Differ. Uravn., 20:5 (1984), 830–838
-
Some features of problems of synthesis of shells in a plan by dynamic characteristics
Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 5, 48–52
-
Solution of physically nonlinear problems of the theory of plates and shells, rectangular in the design, by the method of variational iterations
Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 5, 78–80
-
On the question of the solution of nonlinear boundary value problems by the Kantorovich–Vlasov method
Differ. Uravn., 16:12 (1980), 2186–2189
-
Нелинейные колебания
прямоугольных оболочек на базе обобщенной модели С. П. Тимошенко
Issled. Teor. Plastin i Obolochek, 11 (1975), 360–363
-
О сходимости метода
Канторовича–Власова при исследовании нелинейных собственных
колебаний прямоугольных пластин и оболочек
Issled. Teor. Plastin i Obolochek, 11 (1975), 279–288
© , 2026