RUS  ENG
Full version
PEOPLE

Volodin Igor Nikolaevich

Publications in Math-Net.Ru

  1. Sequential $d$-guaranteed estimate of the normal mean with bounded relative error

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161:1 (2019),  145–151
  2. Lower bounds for the expected sample size in the classical and $d$-posterior statistical problems

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:2 (2018),  309–316
  3. James–Stein confidence sets: equal area approach in the global approximation for the coverage probability

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 152:1 (2010),  132–141
  4. Specifying approximations of beta-distribution for small parameters

    Teor. Veroyatnost. i Primenen., 54:3 (2009),  573–579
  5. The asymptotic of the necessary sample size in testing the hypotheses on the shape parameter of a distribution close to the normal one

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 5,  46–52
  6. Asymptotic expansion of the coverage probability of James–Stein estimators

    Teor. Veroyatnost. i Primenen., 51:4 (2006),  776–785
  7. About distinguishing of BS-distribution from the family of GBS-distributions

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:2 (2006),  31–36
  8. Local asymptotic efficiency of a sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses

    Teor. Veroyatnost. i Primenen., 43:2 (1998),  209–225
  9. Statistical estimators with asymptotically minimum $d$-risk

    Teor. Veroyatnost. i Primenen., 38:1 (1993),  20–32
  10. Confidence estimation within the framework of the $d$-a posteriori approach

    Teor. Veroyatnost. i Primenen., 35:2 (1990),  242–254
  11. On a test for the Weibull distribution against a family of generalized gamma-alternatives

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 6,  3–8
  12. Unbiasedness and Bayesness

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 1,  3–7
  13. Statistical inference with minimum $\alpha$-risk

    Issled. Prikl. Mat., 11:2 (1984),  25–39
  14. Guaranteed statistical inference procedures (determination of the optimal sample size)

    Issled. Prikl. Mat., 10 (1984),  13–53
  15. Asymptotic behavior of the necessary sample size in $d$-guaranteed discrimination of two close hypotheses

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 11,  59–66
  16. Lower bounds for sample size sufficient for procedures of guaranteed equivariant estimation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 3,  14–17
  17. Lower bounds for average sample size in the tests of invariability

    Teor. Veroyatnost. i Primenen., 25:2 (1980),  359–364
  18. Lower bounds for average sample size in the tests of goodness-of-fit and homogeneity

    Teor. Veroyatnost. i Primenen., 24:3 (1979),  637–645
  19. Lower bounds for average sample size and efficiency of procedures of statistical inference

    Teor. Veroyatnost. i Primenen., 24:1 (1979),  119–129
  20. Optimum sample size in statistical inference procedures

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 12,  33–45
  21. Estimations of the necessary sample size in problems of statistical classification. II

    Teor. Veroyatnost. i Primenen., 22:4 (1977),  749–765
  22. Estimations of the necessary sample size in problems of statistical classification. I

    Teor. Veroyatnost. i Primenen., 22:2 (1977),  347–357
  23. On discrimination of gamma and Weibull distributions

    Teor. Veroyatnost. i Primenen., 19:2 (1974),  398–404
  24. On a two-sample test of the variance analysis

    Teor. Veroyatnost. i Primenen., 18:4 (1973),  831–836
  25. Experiment design for comparison of two normal population parameters

    Teor. Veroyatnost. i Primenen., 18:1 (1973),  206–210
  26. Beta-distribution with small parameters

    Teor. Veroyatnost. i Primenen., 15:3 (1970),  563–566
  27. Asymptotic analysis of the distribution of selective correlation coefficients and its statistical application

    Uchenye Zapiski Kazanskogo Universiteta, 130:3 (1970),  3–17
  28. On the number of observations requir ed for testing hypotheses of the binomial distribution parameter

    Teor. Veroyatnost. i Primenen., 14:2 (1969),  327–332
  29. The “direct” and “inverse” choice from Poisson populations

    Uchenye Zapiski Kazanskogo Universiteta, 129:4 (1969),  40–45
  30. On the number of observations necessary for the distinction between two proximate hypotheses

    Teor. Veroyatnost. i Primenen., 12:3 (1967),  575–582
  31. On the power of one criterion for distinguishing the two close Weibull types to a “nuisance” scale parameter

    Uchenye Zapiski Kazanskogo Universiteta, 127:3 (1967),  25–40
  32. Distribution of the number of meteors in the sporadic background

    Uchenye Zapiski Kazanskogo Universiteta, 127:3 (1967),  21–24
  33. On the distinction between the Poisson and Polya distributions when a large number of small samples is available

    Teor. Veroyatnost. i Primenen., 10:2 (1965),  364–367
  34. Testing of statistical hypotheses on the type of distribution by small samples

    Uchenye Zapiski Kazanskogo Universiteta, 125:6 (1965),  3–23
  35. The joint distribution of the maximum and minimum of a trajectory of a Wiener process

    Uchenye Zapiski Kazanskogo Universiteta, 122:4 (1962),  39–52

  36. Book review: Voinov V. G., Nikulin M. S. «Unbiased estimates and their applications»

    Teor. Veroyatnost. i Primenen., 35:3 (1990),  617–618


© Steklov Math. Inst. of RAS, 2026