RUS  ENG
Full version
PEOPLE

Namm Robert Viktorovich

Publications in Math-Net.Ru

  1. Solution to contact problem between an elastic body and a rigid base covered with a layer of deformable material

    Zh. Vychisl. Mat. Mat. Fiz., 65:8 (2025),  1408–1422
  2. Duality method for solving 3D contact problems with friction

    Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023),  1225–1237
  3. Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary

    Dal'nevost. Mat. Zh., 19:2 (2019),  173–184
  4. Solution of a contact elasticity problem with a rigid inclusion

    Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019),  699–706
  5. Modified dual scheme for finite-dimensional and infinite-dimensional convex optimization problems

    Dal'nevost. Mat. Zh., 17:2 (2017),  158–169
  6. The method of successive approximations for solving quasi-variational Signorini inequality

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 1,  44–52
  7. A modified dual scheme for solving an elastic crack problem

    Sib. Zh. Vychisl. Mat., 20:1 (2017),  47–58
  8. Duality method for solving model crack problem

    Dal'nevost. Mat. Zh., 16:2 (2016),  137–146
  9. On the dual method for a model problem with a crack

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  36–43
  10. The Lagrange multiplier method in the finite convex programming problem

    Dal'nevost. Mat. Zh., 15:1 (2015),  53–60
  11. The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals

    Dal'nevost. Mat. Zh., 14:1 (2014),  6–17
  12. A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes

    Sib. Zh. Vychisl. Mat., 17:1 (2014),  43–52
  13. Sensitivity functionals in contact problems of elasticity theory

    Zh. Vychisl. Mat. Mat. Fiz., 54:7 (2014),  1218–1228
  14. Modified Lagrange functionals to solve the variational and quasivariational inequalities of mechanics

    Avtomat. i Telemekh., 2012, no. 4,  3–17
  15. Finite-element solution of a model mechanical problem with friction based on a smoothing Lagrange multiplier method

    Zh. Vychisl. Mat. Mat. Fiz., 52:1 (2012),  24–34
  16. Iterative proximal regularization of a modified Lagrangian functional for solving a semicoercive model problem with friction

    Sib. Zh. Vychisl. Mat., 14:4 (2011),  381–396
  17. Stable smoothing method for solving a model mechanical problem with friction

    Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011),  1032–1042
  18. Solution of a semicoercive Signorini problem by a method of iterative proximal regularization of a modified Lagrange functional

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 4,  36–45
  19. On the convergence of the Uzawa method with a modified Lagrange functional for variational inequalities in mechanics

    Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010),  1357–1366
  20. On a characteristic properties of modified Lagrangian functional in a problem of elasticity with a given friction

    Dal'nevost. Mat. Zh., 9:1-2 (2009),  38–47
  21. Regularization in the Mosolov and Myasnikov problem with boundary friction

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 6,  10–19
  22. The Lagrange multipliers method for solving a semicoercive model problem with friction

    Sib. Zh. Vychisl. Mat., 12:4 (2009),  409–420
  23. Solving the quasi-variational Signorini inequality by the method of successive approximations

    Zh. Vychisl. Mat. Mat. Fiz., 49:5 (2009),  805–814
  24. On a solution of semicoercive model problem with friction

    Dal'nevost. Mat. Zh., 8:2 (2008),  171–179
  25. Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality

    Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008),  1571–1579
  26. Duality scheme for solving the semicoercive signorini problem with friction

    Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007),  2023–2036
  27. On the linear rate of convergence of methods with iterative proximal regularization

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 12,  44–54
  28. Iterative proximal regularization method for finding a saddle point in the semicoercive Signorini problem

    Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006),  2024–2031
  29. An iterative method based on a modified Lagrangian functional for finding a saddle point in the semicoercive Signorini problem

    Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006),  26–36
  30. A method for solving semi-coercive variational inequalities, based on the method of iterative proximal regularization

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 1,  31–35
  31. Approximate solution of the semi-coercive Signorini problem with inhomogeneous boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 43:3 (2003),  388–398
  32. On a $W^2_2$ regularity of a solution of semicoercive variational inequalities

    Dal'nevost. Mat. Zh., 3:1 (2002),  210–215
  33. On a stable duality scheme method for solution of the Mosolov and the Miasnikov problem with boundary friction

    Sib. Zh. Vychisl. Mat., 5:4 (2002),  351–365
  34. On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition

    Dal'nevost. Mat. Zh., 2:1 (2001),  77–80
  35. An approximate solution of the Mosolov and the Miasnikov variational problem with the Coulomb boundary friction

    Sib. Zh. Vychisl. Mat., 4:2 (2001),  163–177
  36. On characterization of limit point in the iterative prox-regularization method

    Sib. Zh. Vychisl. Mat., 1:2 (1998),  143–152
  37. On the rate of convergence of the finite element method in the Signorini problem

    Differ. Uravn., 31:5 (1995),  888–889
  38. On a characteristic of minimizing sequences for the Signorini problem

    Dokl. Akad. Nauk SSSR, 273:4 (1983),  797–800


© Steklov Math. Inst. of RAS, 2026