RUS  ENG
Full version
PEOPLE

Goluzina Elena Gennad'evna

Publications in Math-Net.Ru

  1. Estimates of the first coefficients on a class of typically real functions

    Zap. Nauchn. Sem. POMI, 480 (2019),  103–107
  2. On the mutual change of the coefficients and values of the derivative in a class of regular functions

    Zap. Nauchn. Sem. POMI, 463 (2017),  36–43
  3. On the mutual change of values of the derivative and third coefficient in a class of regular functions

    Zap. Nauchn. Sem. POMI, 453 (2016),  15–21
  4. Sharp estimates of the first coefficients for a class of typically real functions

    Zap. Nauchn. Sem. POMI, 439 (2015),  38–46
  5. Some sharp estimates for typically real functions

    Zap. Nauchn. Sem. POMI, 428 (2014),  81–88
  6. On a problem in the class of typically real functions

    Zap. Nauchn. Sem. POMI, 419 (2013),  43–51
  7. Estimating the second coefficient in the class of typically real functions with two function values prescribed

    Zap. Nauchn. Sem. POMI, 405 (2012),  59–66
  8. On an estimate in the class of typically real functions

    Zap. Nauchn. Sem. POMI, 404 (2012),  75–82
  9. On the mutual change of values of a function and its coefficients in the class of typically real functions

    Zap. Nauchn. Sem. POMI, 395 (2011),  20–30
  10. On the region of values of the system $\{c_2,c_3,f(z_1),f'(z_1)\}$ in the class of typically real finctions

    Zap. Nauchn. Sem. POMI, 382 (2010),  5–14
  11. On distortion theorems for typically real functions

    Zap. Nauchn. Sem. POMI, 371 (2009),  171–175
  12. On the region of values of the system $\{c_2,f(z_1),f(z_2)\}$ in the class of typically real finctions

    Zap. Nauchn. Sem. POMI, 371 (2009),  7–17
  13. A distortion theorem for the class of typically real functions

    Zap. Nauchn. Sem. POMI, 357 (2008),  33–45
  14. A region of values in the class of typically real functions

    Zap. Nauchn. Sem. POMI, 350 (2007),  5–16
  15. The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. III

    Zap. Nauchn. Sem. POMI, 337 (2006),  23–34
  16. On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. II

    Zap. Nauchn. Sem. POMI, 323 (2005),  24–33
  17. On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions

    Zap. Nauchn. Sem. POMI, 314 (2004),  41–51
  18. The region of values of the system $\{f(z_1),f(z_2),f(z_3)\}$ on the class of typically real functions

    Zap. Nauchn. Sem. POMI, 302 (2003),  5–17
  19. Regions of values of the systems $\{f(z_1),f(z_2),f'(z_2)\}$ and $\{f(z_1),f'(z_1),f''(z_1)\}$ on the class of typically real functions

    Zap. Nauchn. Sem. POMI, 286 (2002),  48–61
  20. On the regions of values of systems $\{f(z_0),f'(z_0),c_2\}$ and $\{f(r),f'(r),f(z_0)\}$ in the class of typically real functions

    Zap. Nauchn. Sem. POMI, 276 (2001),  41–51
  21. On the value region of initial coefficients in one class of typically real functions

    Zap. Nauchn. Sem. POMI, 263 (2000),  40–48
  22. On the value regions of systems $\{f(z_1),f'(z_1)\}$ and $\{f(z_1),f(z_2)\}$ in the class of typically real functions

    Zap. Nauchn. Sem. POMI, 254 (1998),  65–75
  23. On the value region of $f(z_0)$ in one class of typically real functions

    Zap. Nauchn. Sem. POMI, 237 (1997),  46–55
  24. On value regions of a functional system in the class of typically real functions

    Zap. Nauchn. Sem. POMI, 226 (1996),  69–79
  25. The value regions of initial coefficients in a certain class of meromorphic functions

    Zap. Nauchn. Sem. POMI, 212 (1994),  91–96
  26. Structural formulas and value regions of functionals in certain classes of regular functions

    Zap. Nauchn. Sem. POMI, 204 (1993),  55–60
  27. Some extremal problems in the class of functions with bounded boundary rotation of complex order

    Zap. Nauchn. Sem. LOMI, 196 (1991),  35–40
  28. On the regions of values of two systems of functionals in one class of functions related with the Caratheodory class

    Zap. Nauchn. Sem. LOMI, 185 (1990),  29–36
  29. On sets of values of initial coefficients in the class of meromorphic functions with the bounded boundary rotation

    Zap. Nauchn. Sem. LOMI, 168 (1988),  23–31
  30. An addendum to my paper “On the value regions of the functional systems in some classes of regular functions” (Mat. zam., 1985, vol. 37, N 6, p. 803-809)

    Zap. Nauchn. Sem. LOMI, 154 (1986),  31–35
  31. Ranges of values of systems of functionals in certain classes of regular functions

    Mat. Zametki, 37:6 (1985),  803–810
  32. Ranges of values of some functionals on classes of regular functions

    Zap. Nauchn. Sem. LOMI, 144 (1985),  46–50
  33. Structure and coefficients for certain classes of regular functions

    Zap. Nauchn. Sem. LOMI, 125 (1983),  47–57
  34. Ranges of certain systems of functionals in a class of functions, convex in a certain direction

    Zap. Nauchn. Sem. LOMI, 112 (1981),  51–58
  35. On the ranges of certain systems of functionals in the classes of functions with positive real part

    Zap. Nauchn. Sem. LOMI, 100 (1980),  17–25
  36. On the values regions of some coefficient systems in the class of functions which typically real in annulus

    Zap. Nauchn. Sem. LOMI, 44 (1974),  26–40
  37. On the value regions of coefficient systems in the class of functions with positive real part in annulus

    Zap. Nauchn. Sem. LOMI, 44 (1974),  17–25
  38. On the coefficients of some class of functions regular in a circle and admitting an integral representation

    Zap. Nauchn. Sem. LOMI, 24 (1972),  63–77
  39. On the systems of functionals values regions incertain classes of functions represented by Stieltijes integrals

    Zap. Nauchn. Sem. LOMI, 24 (1972),  29–62
  40. The value domains of the coefficient systems of a certain class of functions meromorphic in a disk

    Trudy Mat. Inst. Steklov., 94 (1968),  33–46
  41. The mutual growth of the coefficients of a class of $p$-valent functions

    Trudy Mat. Inst. Steklov., 94 (1968),  27–32
  42. Mutual growth of coefficients of a class of $p$-valent functions

    Dokl. Akad. Nauk SSSR, 169:4 (1966),  759–760

  43. Nikolai Andreevich Lebedev and the Leningrad school of function theory in the 1950–1970s

    Zap. Nauchn. Sem. POMI, 276 (2001),  5–19


© Steklov Math. Inst. of RAS, 2026