|
|
Publications in Math-Net.Ru
-
Numerical modeling of strong nonlinear deformation problems in Euler coordinates
Mat. Model., 20:3 (2008), 17–28
-
Численное моделирование сверхпроводящей пластины в магнитном поле
Trudy SVMO, 10:1 (2008), 66–71
-
Numerical solution of strong nonlinear deformation problems in Euler's coordinates
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 149:4 (2007), 45–57
-
On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 8, 14–26
-
Implicit methods for integration of initial value problems for parameterized systems of second-order ordinary differential equations
Zh. Vychisl. Mat. Mat. Fiz., 43:11 (2003), 1684–1696
-
The best many-dimensional parametrization
Differ. Uravn., 36:6 (2000), 841–843
-
Solution of differential-algebraic equations by the method of continuation with respect to the best parameter
Differ. Uravn., 35:3 (1999), 379–387
-
Some numerical efficiency estimates for the transformation of the Cauchy problem for differential equations to the best argument
Zh. Vychisl. Mat. Mat. Fiz., 39:7 (1999), 1134–1141
-
Solution of singular equations transformed to the best argument
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 11, 56–63
-
Estimation of the carrying capacity of conical acrylic windows
Prikl. Mekh. Tekh. Fiz., 38:5 (1997), 173–180
-
Solution of differential-algebraic equations with the choice of the best argument
Zh. Vychisl. Mat. Mat. Fiz., 37:6 (1997), 711–722
-
Best parameter of the continuation of the solution
Dokl. Akad. Nauk, 334:5 (1994), 566–568
-
The Cauchy problem as a problem of continuation with respect to the best parameter
Differ. Uravn., 30:6 (1994), 964–971
-
A parametric approximation
Zh. Vychisl. Mat. Mat. Fiz., 34:12 (1994), 1757–1769
-
The Cauchy problem for non-linearly deformed systems as a problem
of the continuation of the solution with respect to the parameter
Dokl. Akad. Nauk, 329:4 (1993), 426–428
-
The Cauchy problem as a problem of the continuation of a solution with respect to a parameter
Zh. Vychisl. Mat. Mat. Fiz., 33:12 (1993), 1792–1805
-
Метод продолжения по параметру в задачах нелинейного деформирования стержней, пластин
и оболочек
Issled. Teor. Plastin i Obolochek, 17:1 (1984), 3–58
-
Continuation with respect to a parameter in nonlinear elasticity theory problems
Prikl. Mekh. Tekh. Fiz., 21:5 (1980), 158–162
© , 2026