RUS  ENG
Full version
PEOPLE

Shalashilin V I

Publications in Math-Net.Ru

  1. Numerical modeling of strong nonlinear deformation problems in Euler coordinates

    Mat. Model., 20:3 (2008),  17–28
  2. Численное моделирование сверхпроводящей пластины в магнитном поле

    Trudy SVMO, 10:1 (2008),  66–71
  3. Numerical solution of strong nonlinear deformation problems in Euler's coordinates

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 149:4 (2007),  45–57
  4. On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 8,  14–26
  5. Implicit methods for integration of initial value problems for parameterized systems of second-order ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 43:11 (2003),  1684–1696
  6. The best many-dimensional parametrization

    Differ. Uravn., 36:6 (2000),  841–843
  7. Solution of differential-algebraic equations by the method of continuation with respect to the best parameter

    Differ. Uravn., 35:3 (1999),  379–387
  8. Some numerical efficiency estimates for the transformation of the Cauchy problem for differential equations to the best argument

    Zh. Vychisl. Mat. Mat. Fiz., 39:7 (1999),  1134–1141
  9. Solution of singular equations transformed to the best argument

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 11,  56–63
  10. Estimation of the carrying capacity of conical acrylic windows

    Prikl. Mekh. Tekh. Fiz., 38:5 (1997),  173–180
  11. Solution of differential-algebraic equations with the choice of the best argument

    Zh. Vychisl. Mat. Mat. Fiz., 37:6 (1997),  711–722
  12. Best parameter of the continuation of the solution

    Dokl. Akad. Nauk, 334:5 (1994),  566–568
  13. The Cauchy problem as a problem of continuation with respect to the best parameter

    Differ. Uravn., 30:6 (1994),  964–971
  14. A parametric approximation

    Zh. Vychisl. Mat. Mat. Fiz., 34:12 (1994),  1757–1769
  15. The Cauchy problem for non-linearly deformed systems as a problem of the continuation of the solution with respect to the parameter

    Dokl. Akad. Nauk, 329:4 (1993),  426–428
  16. The Cauchy problem as a problem of the continuation of a solution with respect to a parameter

    Zh. Vychisl. Mat. Mat. Fiz., 33:12 (1993),  1792–1805
  17. Метод продолжения по параметру в задачах нелинейного деформирования стержней, пластин и оболочек

    Issled. Teor. Plastin i Obolochek, 17:1 (1984),  3–58
  18. Continuation with respect to a parameter in nonlinear elasticity theory problems

    Prikl. Mekh. Tekh. Fiz., 21:5 (1980),  158–162


© Steklov Math. Inst. of RAS, 2026