RUS  ENG
Full version
PEOPLE

Timerbaev Marat Ravilevich

Publications in Math-Net.Ru

  1. High-order accuracy approximation for the two-point boundary value problem of the fourth order with degenerate coefficients

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:4 (2017),  493–508
  2. Hardy Inequality with a Singular Weight inside a Domain

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:3 (2012),  173–179
  3. Schemes of the finite element method with separation of singularity for a two-point boundary-value problem of the 4th order with degenerate coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 5,  88–92
  4. О схемах МКЭ с численным интегрированием для двухточечной вырождающейся задачи четвертого порядка

    Matem. Mod. Kraev. Zadachi, 2 (2010),  246–248
  5. On finite element method of high-order accuracy for two-point degenerated Dirichlet problem of 4th order

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 152:1 (2010),  235–244
  6. High-accuracy schemes of the finite element method for systems of degenerate elliptic equations on an interval

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 7,  22–34
  7. Схема МКЭ для эллиптической задачи с внутренним вырождением коэффициентов

    Matem. Mod. Kraev. Zadachi, 3 (2009),  213–216
  8. О методе декомпозиции области для эллиптической задачи с вырождающимися внутри области коэффициентами

    Matem. Mod. Kraev. Zadachi, 3 (2007),  180–183
  9. Optimal schemes FEM for problem on beam flexure with sharp edge

    Vestn. Udmurtsk. Univ. Mat., 2007, no. 1,  127–134
  10. Finite element schemes of a high accuracy order for two-pointed heterogeneous boundary-value problem with degeneration

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:4 (2006),  63–75
  11. Weighted estimates for the solution of an anisotropically degenerate equation with Neumann boundary conditions at points of degeneracy

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 7,  63–76
  12. An approximation by finite elements of the eigenvalue problem for degenerate differential operator

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 147:3 (2005),  157–165
  13. Spaces with a graph norm and stengthened Sobolev spaces. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 9,  46–53
  14. Spaces with a graph norm and strengthened Sobolev spaces. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 5,  55–65
  15. Weighted estimates for the solution of the Dirichlet problem with anisotropic degeneration on part of the boundary

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 1,  60–73
  16. Multiplicative extraction of singularities in FEM solvers for degenerate elliptic equations

    Differ. Uravn., 36:7 (2000),  979–985
  17. A mixed finite-element method for quasilinear degenerate fourth-order elliptic equations

    Differ. Uravn., 36:7 (2000),  946–952
  18. Finite-element approximation in weighted Sobolev spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 11,  76–84
  19. The finite element method for fourth-order quasilinear degenerate elliptic equations

    Differ. Uravn., 35:2 (1999),  232–237
  20. Questions of solvability and a finite element method for higher-order degenerate elliptic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 5,  57–64
  21. Error estimates for the scheme of the finite element method for second-order quasilinear degenerate elliptic equations

    Differ. Uravn., 30:7 (1994),  1239–1243
  22. Finite-element approximation of a second-order degenerate elliptic equation in a domain with a curvilinear boundary

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 9,  78–86
  23. Estimates for the accuracy of schemes of the finite element method for second-order degenerate elliptic equations

    Differ. Uravn., 29:7 (1993),  1210–1215
  24. Error estimates for $n$-dimensional spline interpolation in weighted norms

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 10,  54–60
  25. On the solvability of a nonlinear equation of nonstationary filtration type

    Mat. Model., 4:4 (1992),  74–88
  26. Embedding theorems for weighted Sobolev spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 9,  56–60


© Steklov Math. Inst. of RAS, 2026