RUS  ENG
Full version
PEOPLE

Stepanov Alexei Vladimirovich

Publications in Math-Net.Ru

  1. Bruhat decomposition for carpet subgroups of Chevalley groups over fields

    Algebra Logika, 60:5 (2021),  497–509
  2. Subgroups of Chevalley groups of types $ B_l$ and $ C_l$ containing the group over a subring, and corresponding carpets

    Algebra i Analiz, 31:4 (2019),  198–224
  3. Subgroups of Chevalley groups over rings

    Zap. Nauchn. Sem. POMI, 484 (2019),  121–137
  4. Subring subgroups of symplectic groups in characteristic 2

    Algebra i Analiz, 28:4 (2016),  47–61
  5. A new look at the decomposition of unipotents and the normal structure of Chevalley groups

    Algebra i Analiz, 28:3 (2016),  161–173
  6. Non-Abelian $K$-theory for Chevalley groups over rings

    Zap. Nauchn. Sem. POMI, 423 (2014),  244–263
  7. The yoga of commutators: further applications

    Zap. Nauchn. Sem. POMI, 421 (2014),  166–213
  8. Linear groups over general rings. I. Generalities

    Zap. Nauchn. Sem. POMI, 394 (2011),  33–139
  9. The yoga of commutators

    Zap. Nauchn. Sem. POMI, 387 (2011),  53–82
  10. The identity with constants in a Chevalley group of type $\mathrm F_4$

    Algebra i Analiz, 21:5 (2009),  196–202
  11. Calculations in exceptional groups over rings

    Zap. Nauchn. Sem. POMI, 373 (2009),  48–72
  12. Some constructions of exact sequences

    Zap. Nauchn. Sem. POMI, 272 (2000),  303–320
  13. On the normal structure of the general linear group over a ring

    Zap. Nauchn. Sem. POMI, 236 (1997),  166–182
  14. On arrangment of subgroups, normalized by a subgroup

    Zap. Nauchn. Sem. LOMI, 198 (1991),  92–102
  15. Calculations in Chevalley groups over commutative rings

    Dokl. Akad. Nauk SSSR, 307:4 (1989),  788–791
  16. Subgroups of the general linear group over a ring that satisfies stability conditions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 10,  19–25
  17. Stable range and stability of arbitrary vectors

    Uspekhi Mat. Nauk, 44:2(266) (1989),  243–244
  18. A ring of finite stable rank is not necessarily finite in the sense of Dedekind

    Dokl. Akad. Nauk SSSR, 296:3 (1987),  546–549

  19. Nikolai Aleksandrovich Vavilov

    Zap. Nauchn. Sem. POMI, 531 (2024),  7–40
  20. Anatoly Vladimirovich Yakovlev

    Zap. Nauchn. Sem. POMI, 513 (2022),  5–8
  21. 80 anniversary of Professor Anatolii Vladimirovich Yakovlev

    Zap. Nauchn. Sem. POMI, 492 (2020),  5–9


© Steklov Math. Inst. of RAS, 2026