RUS  ENG
Full version
PEOPLE

Sagadeeva Minzilia Almasovna

Publications in Math-Net.Ru

  1. Solution for one stochastic non-stationary linearized Hoff model

    J. Comp. Eng. Math., 12:3 (2025),  27–36
  2. Solving the optimal control problem for one stochastic non-stationary Leontief model

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 17:4 (2025),  35–43
  3. On one interpretation of the non-autonomous linearized Hoff model on a geometric graph

    J. Comp. Eng. Math., 11:4 (2024),  48–63
  4. Problem of optimal dynamic measurement with multiplicative effects in spaces of differentiable “noises”

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024),  651–664
  5. Stability of a stationary solution to non-autonomous linearized Hoff model on a geometrical graph

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:2 (2024),  40–50
  6. Solution of stochastic non-autonomous Chen – Gurtin model with multipoint initial-final condition

    J. Comp. Eng. Math., 10:1 (2023),  44–55
  7. Spaces of differential forms with stochastic complex-valued coefficients

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:2 (2023),  21–25
  8. Stability of a stationary solution to one class of non-autonomous Sobolev type equations

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:3 (2023),  65–73
  9. Development of the theory of optimal dynamic measurement

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  19–33
  10. Numerical optimal measurement algorithm under distortions caused by inertia, resonances, and sensor degradation

    Avtomat. i Telemekh., 2021, no. 1,  55–67
  11. Construction of observations based on data distorted by interference of various types

    J. Comp. Eng. Math., 8:4 (2021),  9–16
  12. Numerical solution to the initial-final problem for non-stationary Leontief-type systems

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:2 (2021),  30–36
  13. Construction an observation in the Shestakov–Sviridyuk model in terms of multidimensional “white noise” distortion

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:4 (2020),  41–50
  14. The Pyt'ev–Chulichkov method for constructing a measurement in the Shestakov–Sviridyuk model

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  81–93
  15. Solution to the initial-final value problem for a non-stationary Leontief type system

    J. Comp. Eng. Math., 6:2 (2019),  42–53
  16. Reconstruction of observation from distorted data for the optimal dynamic measurement problem

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  82–96
  17. Numerical solution for non-stationary linearized Hoff equation defined on geometrical graph

    J. Comp. Eng. Math., 5:3 (2018),  61–74
  18. Degenerate flows of solving operators for nonstationary Sobolev type equations

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:1 (2017),  22–30
  19. Mathematical bases of optimal measurements theory in nonstationary case

    J. Comp. Eng. Math., 3:3 (2016),  19–32
  20. Optimal control of states for a nonstationary model in the relatively radial case

    UBS, 61 (2016),  88–94
  21. Existence of solutions in quasi-Banach spaces for evolutionary Sobolev type equations in relatively radial case

    J. Comp. Eng. Math., 2:2 (2015),  71–81
  22. On integration in quasi-Banach spaces of sequences

    J. Comp. Eng. Math., 2:1 (2015),  52–56
  23. Existence of invariant spaces and exponential dichotomies of solutions of dynamical Sobolev type equations in quasi-Banach spaces

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015),  46–53
  24. Bounded solutions of Barenblatt–Zheltov–Kochina model in quasi-Sobolev spaces

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015),  138–144
  25. The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case

    Bulletin of Irkutsk State University. Series Mathematics, 7 (2014),  19–33
  26. The numerical solution to the optimal control problem for the nonstationary Dzektser model

    J. Comp. Eng. Math., 1:1 (2014),  46–54
  27. Problems of Optimal and Hard Control over Solutions of Special Type of Nonstationary Sobolev Type Equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014),  33–38
  28. Stochastic Leontieff-type equations with multiplicative effect in spaces of complex-valued “noises”

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:4 (2014),  132–139
  29. Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:3 (2014),  128–134
  30. The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:1 (2014),  134–138
  31. A existance and a stability of solutions for semilinear Sobolev type equations in relatively radial case

    Bulletin of Irkutsk State University. Series Mathematics, 6:1 (2013),  78–88
  32. The Approximations for Degenerate $C_0$-semigroup

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:2 (2013),  133–137
  33. The Solvability of Nonstationary Problem of Filtering Theory

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13,  86–98
  34. A nonlocal problem for Sobolev type equations

    Vestnik Chelyabinsk. Gos. Univ., 2008, no. 10,  54–62
  35. Solutions, bounded on the line, of Sobolev-type linear equations with relatively sectorial operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 4,  81–84
  36. Ýêñïîíåíöèàëüíûå äèõîòîìèè ðåøåíèé îäíîãî êëàññà óðàâíåíèé ñîáîëåâñêîãî òèïà

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 7,  136–145

  37. Ãåîðãèé Àíàòîëüåâè÷ Ñâèðèäþê (ê þáèëåþ)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  123–127
  38. Prof. Hristo Kirilov Radev, DSc. (November 15, 1940 – June 09, 2020)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  122–123
  39. Jacek Banasiak (on 60th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  172–174
  40. Shestakov Alexander Leonidovich (to the 65th anniversary)

    J. Comp. Eng. Math., 4:3 (2017),  55–67
  41. Training video course as an element of elite mathematical education

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:3 (2017),  163–165


© Steklov Math. Inst. of RAS, 2026