RUS  ENG
Full version
PEOPLE

Olemskoi Igor' Vladimirovich

Publications in Math-Net.Ru

  1. Direct method for solving systems of second order ordinary differential equations

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:3 (2024),  324–334
  2. A nine-parametric family of embedded methods of sixth order

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023),  449–468
  3. Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023),  423–442
  4. Algorithm for optimal coloring of square $(0,1)$-matrices

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:1 (2023),  90–108
  5. Families of embedded methods of order six

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:2 (2022),  285–296
  6. Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:4 (2021),  353–369
  7. Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:4 (2019),  502–517
  8. A family of sixth-order methods with six stages

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:3 (2018),  215–229
  9. Comparative study of the advantages of structural numerical integration methods for ordinary differential equations

    Tr. SPIIRAN, 53 (2017),  51–72
  10. Explicit nested methods of integration of systems of structurally separated ordinary differential equations of first and second order

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 4,  64–71
  11. Algorithm for finding maximum independent set

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 1,  79–89
  12. An embedded method for the integration of systems of structurally separated ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 50:3 (2010),  434–448
  13. Construction of explicit methods of Runge–Kutta type for the integration of systems of a special type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 2,  75–80
  14. A fifth-order five-stage embedded method of the Dormand–Prince type

    Zh. Vychisl. Mat. Mat. Fiz., 45:7 (2005),  1181–1191
  15. Structural approach to the design of explicit one-stage methods

    Zh. Vychisl. Mat. Mat. Fiz., 43:7 (2003),  961–974
  16. Fifth-order four-stage method for numerical integration of special systems

    Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002),  1179–1190

  17. V. F. Demianov

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 2,  154–156


© Steklov Math. Inst. of RAS, 2026