|
|
Publications in Math-Net.Ru
-
Direct method for solving systems of second order ordinary differential equations
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:3 (2024), 324–334
-
A nine-parametric family of embedded methods of sixth order
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023), 449–468
-
Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023), 423–442
-
Algorithm for optimal coloring of square $(0,1)$-matrices
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:1 (2023), 90–108
-
Families of embedded methods of order six
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:2 (2022), 285–296
-
Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:4 (2021), 353–369
-
Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:4 (2019), 502–517
-
A family of sixth-order methods with six stages
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:3 (2018), 215–229
-
Comparative study of the advantages of structural numerical integration methods for ordinary differential equations
Tr. SPIIRAN, 53 (2017), 51–72
-
Explicit nested methods of integration of systems of structurally separated ordinary differential equations of first and second order
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 4, 64–71
-
Algorithm for finding maximum independent set
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 1, 79–89
-
An embedded method for the integration of systems of structurally separated ordinary differential equations
Zh. Vychisl. Mat. Mat. Fiz., 50:3 (2010), 434–448
-
Construction of explicit methods of Runge–Kutta type for the integration of systems of a special type
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 2, 75–80
-
A fifth-order five-stage embedded method of the Dormand–Prince type
Zh. Vychisl. Mat. Mat. Fiz., 45:7 (2005), 1181–1191
-
Structural approach to the design of explicit one-stage methods
Zh. Vychisl. Mat. Mat. Fiz., 43:7 (2003), 961–974
-
Fifth-order four-stage method for numerical integration of special systems
Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002), 1179–1190
-
V. F. Demianov
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 2, 154–156
© , 2026