RUS  ENG
Full version
PEOPLE

Khudaiberganov Gulmirza

Publications in Math-Net.Ru

  1. On Carleman's formula in ${{\mathbb{C}}^{n}}\left[ m\times m \right]$

    J. Sib. Fed. Univ. Math. Phys., 18:4 (2025),  484–490
  2. Some properties of the automorphisms of the classical domain of the first type in the space $\mathbb{C}\left[ m\times n \right]$

    J. Sib. Fed. Univ. Math. Phys., 17:3 (2024),  295–303
  3. Some problems of complex analysis in matrix Siegel domains

    CMFD, 68:1 (2022),  144–156
  4. Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$

    J. Sib. Fed. Univ. Math. Phys., 14:5 (2021),  589–598
  5. The boundary Morera theorem for domain $\tau^+(n-1)$

    Ufimsk. Mat. Zh., 13:3 (2021),  196–210
  6. Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:2 (2021),  296–310
  7. Laplace and Hua Luogeng operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 3,  74–79
  8. Relationship between the Bergman and Cauchy-Szegö in the domains $\tau ^{+}(n-1)$ è $\Re _{IV}^{n}$

    J. Sib. Fed. Univ. Math. Phys., 13:5 (2020),  559–567
  9. Unified transform method for the Schrödinger equation on a simple metric graph

    J. Sib. Fed. Univ. Math. Phys., 12:4 (2019),  412–420
  10. Boundary Morera theorem for the matrix ball of the third type

    J. Sib. Fed. Univ. Math. Phys., 11:1 (2018),  40–45
  11. Carleman's formula for the matrix upper half-plane

    Acta NUUz. Exact Sciences, 1:1 (2018),  8–13
  12. Boundary version of the Morera theorem for a matrix ball of the second type

    J. Sib. Fed. Univ. Math. Phys., 7:4 (2014),  466–471
  13. The Bergman and Cauchy–Szego kernels for matrix ball of the second type

    J. Sib. Fed. Univ. Math. Phys., 7:3 (2014),  305–310
  14. Laplacian invariant operator in the matrix ball

    J. Sib. Fed. Univ. Math. Phys., 5:2 (2012),  283–288
  15. On the Properties of the Bochner-Martinelli Operator in Half-Space

    J. Sib. Fed. Univ. Math. Phys., 1:1 (2008),  94–99
  16. On the possibility of holomorphic continuation into a matrix domain of functions defined on a segment of its Shilov boundary

    Dokl. Akad. Nauk, 339:5 (1994),  598–599
  17. Multiple extrapolation of holomorphic functions from matrices and functions that are holomorphic in the product of half-planes

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 6,  3–9
  18. The Carathéodory–Fejér problem in the generalized unit disk

    Sibirsk. Mat. Zh., 29:6 (1988),  160–166
  19. A formula of Carleman for functions of matrices

    Sibirsk. Mat. Zh., 29:1 (1988),  207–208
  20. On the polynomial and rational convexity of the union of compact sets in $C^n$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 2,  70–74
  21. Carathéodory–Fejér problem in $C^n$

    Mat. Zametki, 42:3 (1987),  358–368
  22. Example of a nonpolynomially convex compactum consisting of three nonintersecting ellipsoids

    Sibirsk. Mat. Zh., 25:5 (1984),  196–198
  23. The Carathéodory–Fejér problem in higher-dimensional complex analysis

    Sibirsk. Mat. Zh., 23:2 (1982),  58–64


© Steklov Math. Inst. of RAS, 2026