RUS  ENG
Full version
PEOPLE

Ivanov Mikhail Yakovlevich

Publications in Math-Net.Ru

  1. An implementation of improved delayed detached eddy simulation discretized with discontinuous Galerkin method: Application to the vortex system simulation of a highly-loaded turbine cascade

    Zh. Vychisl. Mat. Mat. Fiz., 64:10 (2024),  2368–2387
  2. Generalized solutions of the galilean invariant thermodynamically compatible conservation laws constructed using Godunov's ideas

    Zh. Vychisl. Mat. Mat. Fiz., 60:4 (2020),  567–577
  3. Thermodynamically compatible conservation laws in the model of heat conducting radiating gas

    Zh. Vychisl. Mat. Mat. Fiz., 51:1 (2011),  142–151
  4. Simulation of turbulent motion generation in edge wakes

    Mat. Model., 21:2 (2009),  36–46
  5. On “characteristic” argument functions in acoustics and electrodynamics

    Mat. Model., 12:9 (2000),  65–86
  6. Vector field dynamics in free space

    Mat. Model., 10:7 (1998),  3–20
  7. To the simulation of averaged hydrodynamics solutions

    Mat. Model., 9:12 (1997),  110–120
  8. A fast method for calculating three-dimensional transonic potential flows in turbomachine blade passages

    Zh. Vychisl. Mat. Mat. Fiz., 32:7 (1992),  1093–1113
  9. Calculation of the spatial interaction of a shock wave with a boundary layer on a cylinder

    Zh. Vychisl. Mat. Mat. Fiz., 32:4 (1992),  623–634
  10. An implicit nonfactorized method for calculating turbulent flows of a viscous heat-conducting gas in turbomachine cascades

    Zh. Vychisl. Mat. Mat. Fiz., 31:5 (1991),  754–766
  11. A high-accuracy version of Godunov's implicit scheme for integrating the Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 29:6 (1989),  888–901
  12. A method for calculating potential transonic flows in turbine blade cascades

    Zh. Vychisl. Mat. Mat. Fiz., 29:3 (1989),  447–459
  13. S. K. Godunov's implicit high-accuracy scheme for the numerical integration of Euler's equation

    Zh. Vychisl. Mat. Mat. Fiz., 27:11 (1987),  1725–1735
  14. Calculation of flows in two-and three-dimensional nozzles by the approximate factorization method

    Zh. Vychisl. Mat. Mat. Fiz., 25:9 (1985),  1365–1381
  15. To.the computation of viscous flow in boundary layer approach

    Zh. Vychisl. Mat. Mat. Fiz., 24:5 (1984),  775–780
  16. On the analysis of a mechanism for oscillations of numerical solutions of equations of hydrodynamics

    Zh. Vychisl. Mat. Mat. Fiz., 22:2 (1982),  411–417
  17. On the calculation of smooth stationary flows of an ideal gas by a method of third-order accuracy

    Zh. Vychisl. Mat. Mat. Fiz., 18:4 (1978),  996–1006
  18. The approximation of discontinuous solutions by using through calculation difference schemes

    Zh. Vychisl. Mat. Mat. Fiz., 18:3 (1978),  780–783
  19. Calculation of highly underexpanded supersonic free jets

    Zh. Vychisl. Mat. Mat. Fiz., 16:3 (1976),  750–757
  20. Solution of two- and three-dimensional problems of transonic flow over bodies

    Zh. Vychisl. Mat. Mat. Fiz., 15:5 (1975),  1222–1240
  21. Numerical solution of the problem of the “lateral” interaction of underexpanded supersonic jets of an ideal gas with a plane and with one another

    Zh. Vychisl. Mat. Mat. Fiz., 14:1 (1974),  179–187
  22. Calculation of the supersonic flow around conical bodies

    Zh. Vychisl. Mat. Mat. Fiz., 13:6 (1973),  1557–1572
  23. Computation of transonic flow in a three-dimensional nozzle

    Zh. Vychisl. Mat. Mat. Fiz., 12:5 (1972),  1280–1291
  24. The method of continuous computation for two-dimensional and spatial supersonic flows. II

    Zh. Vychisl. Mat. Mat. Fiz., 12:3 (1972),  805–813
  25. A method of through computation for two- and three-dimensional supersonic flows. I

    Zh. Vychisl. Mat. Mat. Fiz., 12:2 (1972),  441–463


© Steklov Math. Inst. of RAS, 2026