RUS  ENG
Full version
PEOPLE

Smirnov Sergei Nikolaevich

Publications in Math-Net.Ru

  1. A guaranteed deterministic approach to superhedging: the relationship between the deterministic and probabilistic problem statements without trading constraints

    Teor. Veroyatnost. i Primenen., 67:4 (2022),  688–716
  2. A guaranteed deterministic approach to superhedging: most unfavorable scenarios of market behaviour and moment problem

    Mat. Teor. Igr Pril., 12:3 (2020),  50–88
  3. A guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium

    Mat. Teor. Igr Pril., 12:1 (2020),  60–90
  4. Guaranteed deterministic approach to superhedging: properties of binary European option

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 1,  29–59
  5. A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the Bellman–Isaacs equations

    Mat. Teor. Igr Pril., 11:4 (2019),  87–115
  6. A guaranteed deterministic approach to superhedging: no arbitrage market condition

    Mat. Teor. Igr Pril., 11:2 (2019),  68–95
  7. A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:1 (2019),  219–228
  8. A guaranteed deterministic approach to superhedging: financial market model,trading constraints and Bellman–Isaacs equations

    Mat. Teor. Igr Pril., 10:4 (2018),  59–99
  9. Stochastic model of ultrarelativistic electrons passage through a thick monocrystals

    Mat. Model., 12:9 (2000),  25–44
  10. Maximal coupling for processes in $D[0,\infty)$

    Dokl. Akad. Nauk SSSR, 311:5 (1990),  1059–1061
  11. Numerical methods of solving stochastic differential equations

    Mat. Model., 2:11 (1990),  108–121
  12. On the theory of spatially-homogeneous Boltzmann equation

    Mat. Model., 1:3 (1989),  123–134
  13. Reverse of the Sevast'yanov Ergodic Theorem

    Teor. Veroyatnost. i Primenen., 34:2 (1989),  390–392
  14. Justification of a stochastic method for solving the Boltzmann equation

    Zh. Vychisl. Mat. Mat. Fiz., 29:2 (1989),  270–276
  15. An efficient stochastic algorithm for solving the Boltzmann equation

    Zh. Vychisl. Mat. Mat. Fiz., 29:1 (1989),  118–124
  16. A stochastic algorithm for solving the Boltzmann equation based on Euler's method

    Zh. Vychisl. Mat. Mat. Fiz., 28:5 (1988),  764–768
  17. On a stochastic method of solving the Boltzmann equation

    Zh. Vychisl. Mat. Mat. Fiz., 28:2 (1988),  293–297
  18. Recurrence of absolute-difference chains

    Mat. Zametki, 42:2 (1987),  336–342
  19. On the asymptotic behaviour of Feller chains

    Dokl. Akad. Nauk SSSR, 263:3 (1982),  554–558


© Steklov Math. Inst. of RAS, 2026