|
|
Publications in Math-Net.Ru
-
A guaranteed deterministic approach to superhedging: the relationship
between the deterministic and probabilistic problem statements without trading constraints
Teor. Veroyatnost. i Primenen., 67:4 (2022), 688–716
-
A guaranteed deterministic approach to superhedging: most unfavorable scenarios of market behaviour and moment problem
Mat. Teor. Igr Pril., 12:3 (2020), 50–88
-
A guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium
Mat. Teor. Igr Pril., 12:1 (2020), 60–90
-
Guaranteed deterministic approach to superhedging: properties of binary European option
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 1, 29–59
-
A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the Bellman–Isaacs equations
Mat. Teor. Igr Pril., 11:4 (2019), 87–115
-
A guaranteed deterministic approach to superhedging: no arbitrage market condition
Mat. Teor. Igr Pril., 11:2 (2019), 68–95
-
A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping
Trudy Inst. Mat. i Mekh. UrO RAN, 25:1 (2019), 219–228
-
A guaranteed deterministic approach to superhedging: financial market model,trading constraints and Bellman–Isaacs equations
Mat. Teor. Igr Pril., 10:4 (2018), 59–99
-
Stochastic model of ultrarelativistic electrons passage through a thick monocrystals
Mat. Model., 12:9 (2000), 25–44
-
Maximal coupling for processes in $D[0,\infty)$
Dokl. Akad. Nauk SSSR, 311:5 (1990), 1059–1061
-
Numerical methods of solving stochastic differential equations
Mat. Model., 2:11 (1990), 108–121
-
On the theory of spatially-homogeneous Boltzmann equation
Mat. Model., 1:3 (1989), 123–134
-
Reverse of the Sevast'yanov Ergodic Theorem
Teor. Veroyatnost. i Primenen., 34:2 (1989), 390–392
-
Justification of a stochastic method for solving the Boltzmann equation
Zh. Vychisl. Mat. Mat. Fiz., 29:2 (1989), 270–276
-
An efficient stochastic algorithm for solving the Boltzmann equation
Zh. Vychisl. Mat. Mat. Fiz., 29:1 (1989), 118–124
-
A stochastic algorithm for solving the Boltzmann equation based on Euler's method
Zh. Vychisl. Mat. Mat. Fiz., 28:5 (1988), 764–768
-
On a stochastic method of solving the Boltzmann equation
Zh. Vychisl. Mat. Mat. Fiz., 28:2 (1988), 293–297
-
Recurrence of absolute-difference chains
Mat. Zametki, 42:2 (1987), 336–342
-
On the asymptotic behaviour of Feller chains
Dokl. Akad. Nauk SSSR, 263:3 (1982), 554–558
© , 2026