RUS  ENG
Full version
PEOPLE

Volosevich Petr Petrovich

Publications in Math-Net.Ru

  1. Study of magnetohydrodynamic processes taking into account hyperbolicity effects in heat transfer

    Mat. Model., 21:7 (2009),  3–19
  2. Optimization of neutronless targets of laser-driven fusion

    Mat. Model., 21:4 (2009),  35–43
  3. Dynamic and heating of plasma subject to heat flux relaxation

    Mat. Model., 20:4 (2008),  57–68
  4. Mathematical modeling of heat transfer in a moving medium taking into account the relaxation of heat flux and bulk energy sources

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 1,  31–39
  5. Analysis of heat transfer processes taking into account the relaxation of heat flux and bulk energy sources in the medium

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 1,  38–44
  6. Self-similar solutions of magnetohydrodynamics equations with volume sources and flows

    Mat. Model., 8:1 (1996),  39–52
  7. Self-similar and numerical solutions of MHD-equations with non-linear bulk sources and sinks

    Mat. Model., 5:2 (1993),  25–41
  8. Conversion of laser radiation into thermal self-radiation of a plasma

    Kvantovaya Elektronika, 14:9 (1987),  1887–1893
  9. Algorithms for the solution of a three-temperature hydrodynamics equation system in the SAFRA applied-program block

    Differ. Uravn., 20:7 (1984),  1127–1135
  10. Various modes of heat transfer in two-temperature gas dynamics

    Differ. Uravn., 19:7 (1983),  1122–1131
  11. The problem of a piston moving in a gas with energy sources

    Zh. Vychisl. Mat. Mat. Fiz., 23:3 (1983),  693–701
  12. Some self-similar problems of gas dynamics with account taken of complementary nonlinear effects

    Differ. Uravn., 17:7 (1981),  1200–1213
  13. Analysis of physical processes in targets heated by laser radiation of 200–300 J energy

    Kvantovaya Elektronika, 2:8 (1975),  1816–1818
  14. Conditions established in a laser thermonuclear reactor chamber by a microexplosion of a target

    Kvantovaya Elektronika, 2:6 (1975),  1196–1200
  15. Solution of the self-similar problem of the outflow of a gas into a vacuum in the two-temperature hydrodynamic approximation

    Zh. Vychisl. Mat. Mat. Fiz., 15:3 (1975),  702–712
  16. Different modes of heating when high-power radiation fluxes interact with a material

    Prikl. Mekh. Tekh. Fiz., 13:5 (1972),  41–48
  17. The influence of heat conductivity on the propagation of a laser radiation absorption wave

    Dokl. Akad. Nauk SSSR, 194:1 (1970),  49–52
  18. The self-modelling problem of a heavy current discharge in a plasma

    Zh. Vychisl. Mat. Mat. Fiz., 10:6 (1970),  1447–1457
  19. The calculation of shock waves which absorb radiation

    Zh. Vychisl. Mat. Mat. Fiz., 10:5 (1970),  1301–1305
  20. A finite-difference method for the solution of one-dimensional non-stationary problems in magneto-hydrodynamics

    Zh. Vychisl. Mat. Mat. Fiz., 8:5 (1968),  1025–1038
  21. Non-linear effect of formation in self sustained high temperature electrically conducting gas layer in non-stationary processes of magnetic hydrodynamics

    Dokl. Akad. Nauk SSSR, 173:4 (1967),  808–811
  22. Движение газа перед поршнем в магнитном поле в случае нелинейной теплопроводности и проводимости

    Zh. Vychisl. Mat. Mat. Fiz., 6:supplement to № 4 (1966),  103–112
  23. Автомодельная задача о движении плоского поршня в теплопроводном газе при наличии вмороженного магнитного поля

    Zh. Vychisl. Mat. Mat. Fiz., 6:supplement to № 4 (1966),  87–102
  24. One-dimensional self-model motions of a gas with thermal and electrical conductivity in a magnetic field

    Zh. Vychisl. Mat. Mat. Fiz., 5:6 (1965),  1096–1106
  25. Travelling waves in a medium with non-linear heat conduction

    Zh. Vychisl. Mat. Mat. Fiz., 5:2 (1965),  199–217
  26. The solution of the homogeneous plane problem of the motion of a piston in an ideal heat-conducting gas

    Zh. Vychisl. Mat. Mat. Fiz., 3:1 (1963),  159–169


© Steklov Math. Inst. of RAS, 2026