RUS  ENG
Full version
PEOPLE

Klimov Gennadi Pavlovich

Publications in Math-Net.Ru

  1. Reduction of process coupling to the intersection of controlling sequences

    Dokl. Akad. Nauk SSSR, 302:5 (1988),  1051–1054
  2. Intersection of random trajectories

    Dokl. Akad. Nauk SSSR, 302:4 (1988),  799–802
  3. Intersection of random sequences

    Mat. Zametki, 40:5 (1986),  677–682
  4. Coupling of inhomogeneous Markov fields

    Dokl. Akad. Nauk SSSR, 284:4 (1985),  791–794
  5. Coupling of weakly regenerative fields

    Dokl. Akad. Nauk SSSR, 284:3 (1985),  521–524
  6. Existence of a final distribution for an irreducible Feller process with invariant measure

    Mat. Zametki, 37:2 (1985),  284–288
  7. Limit theorems for time-homogeneous Markov processes

    Teor. Veroyatnost. i Primenen., 23:4 (1978),  731–743
  8. Time-sharing service systems. II

    Teor. Veroyatnost. i Primenen., 23:2 (1978),  331–339
  9. An ergodic theorem for regenerating processes

    Teor. Veroyatnost. i Primenen., 21:2 (1976),  402–405
  10. Invariant decision procedures

    Teor. Veroyatnost. i Primenen., 20:2 (1975),  309–331
  11. Time-sharing service systems. 1

    Teor. Veroyatnost. i Primenen., 19:3 (1974),  558–576
  12. Invariant decision rules in sequential analysis

    Dokl. Akad. Nauk SSSR, 202:6 (1972),  1254–1257
  13. The determination of fiducial probability in terms of confidence probability

    Dokl. Akad. Nauk SSSR, 198:5 (1971),  1015–1017
  14. A generalization of the Fisher–Lindley definition of a fiducial distribution

    Dokl. Akad. Nauk SSSR, 196:6 (1971),  1270–1271
  15. Determination of a fiducial distribution in terms of an invariant pivotal function

    Dokl. Akad. Nauk SSSR, 196:5 (1971),  1010–1012
  16. A determination of the fiducial distribution for a multidimensional normal population

    Dokl. Akad. Nauk SSSR, 191:5 (1970),  983–984
  17. The fiducial approach to statistics

    Dokl. Akad. Nauk SSSR, 191:4 (1970),  763–765
  18. The Structure of a Stationary Renewal Process

    Teor. Veroyatnost. i Primenen., 12:1 (1967),  134–141
  19. Extremal flows in queuing theory

    Uspekhi Mat. Nauk, 17:5(107) (1962),  193–195
  20. The simulation on electronic digital computers of a class of mass production

    Zh. Vychisl. Mat. Mat. Fiz., 1:5 (1961),  935–940
  21. Computer solution of a problem in the theory of mass production by a Monte-Carlo method

    Zh. Vychisl. Mat. Mat. Fiz., 1:5 (1961),  933–935


© Steklov Math. Inst. of RAS, 2026