|
|
Publications in Math-Net.Ru
-
Reduction of process coupling to the intersection of controlling
sequences
Dokl. Akad. Nauk SSSR, 302:5 (1988), 1051–1054
-
Intersection of random trajectories
Dokl. Akad. Nauk SSSR, 302:4 (1988), 799–802
-
Intersection of random sequences
Mat. Zametki, 40:5 (1986), 677–682
-
Coupling of inhomogeneous Markov fields
Dokl. Akad. Nauk SSSR, 284:4 (1985), 791–794
-
Coupling of weakly regenerative fields
Dokl. Akad. Nauk SSSR, 284:3 (1985), 521–524
-
Existence of a final distribution for an irreducible Feller process with invariant measure
Mat. Zametki, 37:2 (1985), 284–288
-
Limit theorems for time-homogeneous Markov processes
Teor. Veroyatnost. i Primenen., 23:4 (1978), 731–743
-
Time-sharing service systems. II
Teor. Veroyatnost. i Primenen., 23:2 (1978), 331–339
-
An ergodic theorem for regenerating processes
Teor. Veroyatnost. i Primenen., 21:2 (1976), 402–405
-
Invariant decision procedures
Teor. Veroyatnost. i Primenen., 20:2 (1975), 309–331
-
Time-sharing service systems. 1
Teor. Veroyatnost. i Primenen., 19:3 (1974), 558–576
-
Invariant decision rules in sequential analysis
Dokl. Akad. Nauk SSSR, 202:6 (1972), 1254–1257
-
The determination of fiducial probability in terms of confidence probability
Dokl. Akad. Nauk SSSR, 198:5 (1971), 1015–1017
-
A generalization of the Fisher–Lindley definition of a fiducial distribution
Dokl. Akad. Nauk SSSR, 196:6 (1971), 1270–1271
-
Determination of a fiducial distribution in terms of an invariant pivotal function
Dokl. Akad. Nauk SSSR, 196:5 (1971), 1010–1012
-
A determination of the fiducial distribution for a multidimensional normal population
Dokl. Akad. Nauk SSSR, 191:5 (1970), 983–984
-
The fiducial approach to statistics
Dokl. Akad. Nauk SSSR, 191:4 (1970), 763–765
-
The Structure of a Stationary Renewal Process
Teor. Veroyatnost. i Primenen., 12:1 (1967), 134–141
-
Extremal flows in queuing theory
Uspekhi Mat. Nauk, 17:5(107) (1962), 193–195
-
The simulation on electronic digital computers of a class of mass production
Zh. Vychisl. Mat. Mat. Fiz., 1:5 (1961), 935–940
-
Computer solution of a problem in the theory of mass production by a Monte-Carlo method
Zh. Vychisl. Mat. Mat. Fiz., 1:5 (1961), 933–935
© , 2026