RUS  ENG
Full version
PEOPLE

Senashov Sergei Ivanovich

Publications in Math-Net.Ru

  1. Solving cauchy problem for elasticity equations in a plane dynamic case

    J. Sib. Fed. Univ. Math. Phys., 18:1 (2025),  71–80
  2. Group properties of equations of solid deformation mechanics with nonlocal coefficients

    Prikl. Mekh. Tekh. Fiz., 66:4 (2025),  219–224
  3. Bending of the elastic-plastic box-shaped beam reinforced with elastic fibers

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 97,  158–167
  4. Solving of boundary value problem of the theory of elasticity in displacements using conservation laws

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 1(59),  130–134
  5. Bending of an elastic-plastic beam of box section

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 1(59),  107–114
  6. Torsion of a two-layer elastic rod with a box section

    Prikl. Mekh. Tekh. Fiz., 65:3 (2024),  161–168
  7. Conservation laws and solutions of the first boundary value problem for the equations of two- and three-dimensional elasticity

    Sib. Zh. Ind. Mat., 27:2 (2024),  100–111
  8. Elasto-plastic twisting of a two-layer rod weakened by holes

    J. Sib. Fed. Univ. Math. Phys., 16:5 (2023),  591–597
  9. Elastic-plastic torsion of a multilayer rod

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2023, no. 2(56),  28–35
  10. Solution of the problem of compression of a two-layer nonlinear material

    Prikl. Mekh. Tekh. Fiz., 64:4 (2023),  184–187
  11. Numerical-and-analytic method for solving Cauchy problem of one-dimensional gas dynamics

    J. Sib. Fed. Univ. Math. Phys., 15:4 (2022),  444–449
  12. The use of conservation laws for solving boundary value problems of the Moisila—Teodorescu system

    Sib. Zh. Ind. Mat., 25:2 (2022),  101–109
  13. Distribution of zones of elastic and plastic deformation appearing in a layer under compression by two rigid parallel plates

    J. Sib. Fed. Univ. Math. Phys., 14:4 (2021),  492–496
  14. Group analysis of the ideal plasticity equations

    Prikl. Mekh. Tekh. Fiz., 62:5 (2021),  208–216
  15. Determining elastic and plastic deformation regions in a problem of unixaxial tension of a plate weakened by holes

    Prikl. Mekh. Tekh. Fiz., 62:1 (2021),  179–186
  16. About elastic torsion around three axes

    Sib. Zh. Ind. Mat., 24:1 (2021),  120–125
  17. New classes of solutions of dynamical problems of plasticity

    J. Sib. Fed. Univ. Math. Phys., 13:6 (2020),  792–796
  18. Anisotropic antiplane elastoplastic problem

    J. Sib. Fed. Univ. Math. Phys., 13:2 (2020),  213–217
  19. Group analysis and exact solutions of the dynamic equations of plane strain of an incompressible nonlinearly elastic body

    Sib. Zh. Ind. Mat., 23:1 (2020),  11–15
  20. Elastoplastic bending of the console with transverse force

    J. Sib. Fed. Univ. Math. Phys., 12:5 (2019),  637–643
  21. New solutions of dynamic equations of ideal plasticity

    Sib. Zh. Ind. Mat., 22:4 (2019),  89–94
  22. New three-dimensional plastic flows corresponding to a homogeneous stress state

    Sib. Zh. Ind. Mat., 22:3 (2019),  114–117
  23. Solution of boundary value problems of plasticity with the use of conservation laws

    J. Sib. Fed. Univ. Math. Phys., 11:3 (2018),  356–363
  24. On elastoplastic torsion of a rod with multiply connected cross-section

    J. Sib. Fed. Univ. Math. Phys., 8:3 (2015),  343–351
  25. Elasto-plastic bending of a beam

    J. Sib. Fed. Univ. Math. Phys., 7:2 (2014),  218–223
  26. Conservation laws, hodograph transformation and boundary value problems of plane plasticity

    SIGMA, 8 (2012), 071, 16 pp.
  27. The new solutions sets of minimal surface equation

    J. Sib. Fed. Univ. Math. Phys., 3:2 (2010),  248–255
  28. Evolution of the characteristics of the Prandtl solution

    Sib. Zh. Ind. Mat., 10:4 (2007),  118–121
  29. Conservation laws and an exact solution of the Cauchy problem for equations of ideal plasticity

    Dokl. Akad. Nauk, 345:5 (1995),  619–620
  30. Lie groups and the classification of elastic materials

    Dokl. Akad. Nauk, 335:6 (1994),  712–713
  31. Symmetries and exact solutions of equations of plasticity with a tear condition

    Dokl. Akad. Nauk, 334:3 (1994),  317–318
  32. The Lie–Bäcklund group of the equations of nonlinear geometric optics

    Differ. Uravn., 29:10 (1993),  1751–1764
  33. General solutions and symmetries of equations of the linear theory of elasticity

    Dokl. Akad. Nauk, 322:3 (1992),  513–515
  34. Exact solutions and symmetries for non-linear elasticity equations

    Mat. Model., 4:6 (1992),  99–105
  35. Conservation laws for equations of plasticity

    Dokl. Akad. Nauk SSSR, 320:3 (1991),  606–608
  36. Solutions of the equations of plasticity in the case of spiral-helical symmetry

    Dokl. Akad. Nauk SSSR, 317:1 (1991),  57–59
  37. Group analysis of equations of an anisotropic ideally plastic medium

    Dokl. Akad. Nauk SSSR, 316:6 (1991),  1374–1377
  38. Antiplane elastic-plastic flow

    Mat. Model., 2:8 (1990),  70–75
  39. Antiplanar plastic flow

    Prikl. Mekh. Tekh. Fiz., 29:3 (1988),  159–161
  40. A class of exact solutions of the equations of ideal plasticity

    Prikl. Mekh. Tekh. Fiz., 27:3 (1986),  139–142
  41. Exact solution of the three-dimensional problem of ideal plasticity

    Prikl. Mekh. Tekh. Fiz., 25:4 (1984),  153–155
  42. Velocity field in the Prandtl problem of compression of a plastic layer

    Prikl. Mekh. Tekh. Fiz., 25:1 (1984),  155–156
  43. Invariant solutions of a three-dimensional ideal plasticity problem

    Prikl. Mekh. Tekh. Fiz., 21:3 (1980),  159–163


© Steklov Math. Inst. of RAS, 2026