RUS  ENG
Full version
PEOPLE

Pavlova Mariya Filippovna

Publications in Math-Net.Ru

  1. Convergence of an implicit difference scheme for the problem of saturated filtration consolidation with a limiting gradient

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 163:3-4 (2021),  250–260
  2. On the solvability of a variational inequality in the filtration theory

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161:4 (2019),  552–568
  3. On unique solvability of one nonlinear nonlocal with respect to a gradient solution of a nonstationary problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 3,  78–83
  4. On an approximate solution method for the problem of surface and groundwater combined movement with exact approximation on the section line

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158:4 (2016),  482–499
  5. On convergence of the explicit difference scheme for evolution variational inequality with nonlocal space operator

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:4 (2015),  5–23
  6. Research on the convergence of an explicit difference scheme for a parabolic equation with a nonlinear nonlocal spatial operator

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:4 (2013),  24–39
  7. The unique solvability of a certain nonlocal nonlinear problem with a spatial operator strongly monotone with respect to the gradient

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 3,  92–95
  8. A study of an implicit difference scheme for the problem of saturated-unsaturated filtration consolidation

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:4 (2012),  33–48
  9. On the solvability of the problem of the coupled movement of underground and surface waters with nonhomogeneous bounds to the solution

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:1 (2012),  147–161
  10. On uniqueness of the solution of a variational inequality of the coupled movement of the underground and surface waters theory with nonhomogeneous bounds and nonhomogeneous boundary conditions

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 149:4 (2007),  73–89
  11. On the existence of a weak solution of a problem of nonsaturated filtration consolidation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 10,  58–68
  12. Numerical investigation of filtration consolidation

    Mat. Model., 13:9 (2001),  63–70
  13. A uniqueness theorem for the solution of a problem in the theory of the joint motion of channel and underground waters

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 11,  12–25
  14. Convergence of explicit difference schemes for a variational inequality of the theory of nonlinear nonstationary filtration

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 7,  49–60
  15. On the solvability of a nonlinear evolutionary inequality of the theory of joint motion of surface and ground waters

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 4,  20–31
  16. On the solvability of a variational inequality in the theory of nonlinear nonstationary filtration

    Differ. Uravn., 32:7 (1996),  958–965
  17. On the solvability of a problem of the simultaneous motion of surface and ground waters

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 9,  16–27
  18. Convergence of an implicit difference scheme for a nonlinear equation of nonstationary filtration type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 1,  43–53
  19. On the solvability of a nonlinear equation of nonstationary filtration type

    Mat. Model., 4:4 (1992),  74–88
  20. Convergence of implicit difference scheme for the problem of conjunctive ground water and surface flow with an arbitrary channel cross section

    Issled. Prikl. Mat., 17 (1990),  27–46
  21. Numerical solution of the nonstationary problem of conjunctive motion of ground and surface water

    Issled. Prikl. Mat., 16 (1989),  34–40
  22. Investigation of the equations of nonstationary nonlinear filtration

    Differ. Uravn., 23:8 (1987),  1436–1446
  23. Difference approximation of a nonlinear nonstationary variational inequality

    Differ. Uravn., 20:7 (1984),  1237–1247
  24. A difference scheme for the solution of the problem of simultaneous motion of ground and surface water

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 9,  72–75
  25. Investigation of an implicit difference scheme for a variational inequality of nonlinear filtration theory

    Differ. Uravn., 16:7 (1980),  1255–1264
  26. Difference schemes for an equation of non-steady-state nonlinear filtration

    Differ. Uravn., 15:9 (1979),  1692–1706


© Steklov Math. Inst. of RAS, 2026