RUS  ENG
Full version
PEOPLE

Gamzaev Khanlar Mehbali

Publications in Math-Net.Ru

  1. Numerical identification of hydrodynamic parameters of a reservoir under elastic-water-drive development mode

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 18:4 (2025),  56–65
  2. Numerical method for restoring the initial condition for the wave equation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 88,  5–13
  3. Identification of the boundary condition in the diffusion model of the hydrodynamic flow in a chemical reactor

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:2 (2024),  5–14
  4. Numerical method for solving the inverse problem of non-stationary flow of viscoelastic fluid in the pipe

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:4 (2022),  90–98
  5. Identification of the trajectory of a moving point source when heating a one-dimensional rod

    TVT, 59:4 (2021),  584–588
  6. Simulation of an unsteady incompressible fluid flow through a perforated pipeline

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 72,  60–69
  7. The problem of identifying the trajectory of a mobile point source in the convective transport equation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:2 (2021),  78–84
  8. Inverse problem of unsteady incompressible fluid flow in a pipe with a permeable wall

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:1 (2020),  24–30
  9. On one inverse problem of phase transformation in solids

    Zhurnal Tekhnicheskoi Fiziki, 88:8 (2018),  1123–1127
  10. A numerical method of solving the coefficient inverse problem for the nonlinear equation of diffusion-reaction

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:1 (2018),  145–151
  11. A numerical method for solving the coefficient inverse problem for diffusion-convection-reaction equation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 50,  67–78
  12. Numerical method for solving a nonlocal problem on pipeline transportation of viscous liquid

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:2 (2017),  5–12
  13. Numerical investigation of a viscous fluid flow through the gap between two parallel plates

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 5(43),  64–72
  14. Numerical solution of the combined inverse problem for generalized Burgers equation

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:4 (2015),  35–42
  15. On numerical simulation of the fluid flow in a dual-completion water-bearing system

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 3(35),  52–59
  16. Modeling the spread of an oil slick on the sea surface

    Prikl. Mekh. Tekh. Fiz., 50:3 (2009),  127–130
  17. Modeling of movement of a single particle in ascending stream of visco-plastic liquid

    Mat. Model., 19:3 (2007),  87–93
  18. Analysis of the optimal control of oil expulsion by water

    Zh. Vychisl. Mat. Mat. Fiz., 23:4 (1983),  994–999
  19. Численный метод восстановления температурного поля в стержне по одномерной модели теплопроводности без граничных условий

    TVT,  0


© Steklov Math. Inst. of RAS, 2026