RUS  ENG
Full version
PEOPLE

Zubov Vladimir Ivanovich

Publications in Math-Net.Ru

  1. Simultaneous identification of the thermal conductivity and volumetric heat capacity of a substance in the three-dimensional case

    Zh. Vychisl. Mat. Mat. Fiz., 65:8 (2025),  1397–1407
  2. Fast automatic differentiation technique and control of thermal dynamical systems

    Zh. Vychisl. Mat. Mat. Fiz., 64:9 (2024),  1604–1617
  3. Determination of the thermal conductivity and volumetric heat capacity of substance from heat flux

    Zh. Vychisl. Mat. Mat. Fiz., 64:4 (2024),  658–670
  4. On simultaneous determination of thermal conductivity and volume heat capacity of substance

    Zh. Vychisl. Mat. Mat. Fiz., 63:8 (2023),  1279–1295
  5. FAD technique and differentiation of a composite function

    Zh. Vychisl. Mat. Mat. Fiz., 63:1 (2023),  61–73
  6. On methods for the numerical solution of one spectral problem

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2022, no. 4,  35–49
  7. On one approach to the numerical solution of a coefficient inverse problem

    Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021),  58–62
  8. Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  19–34
  9. Determination of the thermal conductivity from the heat flux on the surface of a three-dimensional body

    Zh. Vychisl. Mat. Mat. Fiz., 61:10 (2021),  1594–1609
  10. Identification of the thermal conductivity coefficient in the three-dimensional case by solving a corresponding optimization problem

    Zh. Vychisl. Mat. Mat. Fiz., 61:9 (2021),  1447–1463
  11. Choice of finite-difference schemes in solving coefficient inverse problems

    Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020),  1643–1655
  12. Application of the fast automatic differentiation technique for solving inverse coefficient problems

    Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020),  18–28
  13. One feature of using the general Lagrange multiplier method

    Zh. Vychisl. Mat. Mat. Fiz., 59:9 (2019),  1482–1494
  14. An approach to determining the variation of a functional with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019),  1277–1295
  15. Identification of the thermal conductivity coefficient using a given surface heat flux

    Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018),  2112–2126
  16. Identification of thermal conductivity coefficient using a given temperature field

    Zh. Vychisl. Mat. Mat. Fiz., 58:10 (2018),  1640–1655
  17. Application of the fast automatic differentiation for calculation of gradients of material's Bulk modulus and Shear modulus

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 1,  95–106
  18. Software package to calculate the aerodynamic characteristics of aircrafts

    Proceedings of ISP RAS, 29:6 (2017),  271–288
  19. Generalized fast automatic differentiation technique

    Zh. Vychisl. Mat. Mat. Fiz., 56:11 (2016),  1847–1862
  20. Application of fast automatic differentiation for solving the inverse coefficient problem for the heat equation

    Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016),  1760–1774
  21. On the efficiency of solving optimal control problems by means of Fast Automatic Differentiation technique

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  20–29
  22. Numerical simulation of gas flows around aircraft with allowance for the flow/exhaust jet interaction

    Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015),  681–694
  23. Investigation of the optimal control of metal solidification for a complex-geometry object in a new formulation

    Zh. Vychisl. Mat. Mat. Fiz., 54:12 (2014),  1879–1893
  24. On an algorithm for calculating diffraction integrals

    Zh. Vychisl. Mat. Mat. Fiz., 54:7 (2014),  1078–1095
  25. Investigation of the optimal control problem for metal solidification in a new formulation

    Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014),  734–745
  26. On the influence of setup parameters on the control of solidification in metal casting

    Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013),  238–248
  27. Control of substance solidification in a complex-geometry mold

    Zh. Vychisl. Mat. Mat. Fiz., 52:12 (2012),  2149–2162
  28. Functional gradient evaluation in the optimal control of a complex dynamical system

    Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011),  814–833
  29. Choosing a cost functional and a difference scheme in the optimal control of metal solidification

    Zh. Vychisl. Mat. Mat. Fiz., 51:1 (2011),  24–38
  30. Optimal control for one complex dynamic system, II

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 2,  3–18
  31. Optimal control for one complex dynamic system, I

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 1,  3–21
  32. Determination of functional gradient in an optimal control problem related to metal solidification

    Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009),  51–75
  33. Optimal control of the solidification process in metal casting

    Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  851–862
  34. Mathematical modeling and study of the process of solidification in metal casting

    Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007),  882–902
  35. Calculation of deformations in nanocomposites using the block multipole method with the analytical-numerical account of the scale effects

    Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006),  1302–1321
  36. Numerical simulation of three-dimensional turbulent gas flows in complex nozzle systems

    Zh. Vychisl. Mat. Mat. Fiz., 45:10 (2005),  1871–1885
  37. Modeling and optimization of melting and solidification process

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 3,  91–109
  38. Optimal control of the melting process and solidification of a substance

    Zh. Vychisl. Mat. Mat. Fiz., 44:8 (2004),  1364–1379
  39. Optimal control of the process of the crystallization of a substance

    Zh. Vychisl. Mat. Mat. Fiz., 44:1 (2004),  38–50
  40. On a melting process with restriction on a cooling velocity

    Mat. Model., 14:8 (2002),  119–123
  41. Unsteady gas dynamic phenomena in pipeline through the Black sea

    Mat. Model., 13:4 (2001),  58–70
  42. A modified scheme for analyzing the process of melting

    Zh. Vychisl. Mat. Mat. Fiz., 41:9 (2001),  1434–1443
  43. On optimal control of melting process

    Mat. Model., 12:5 (2000),  114–118
  44. Optimal control of the process of melting

    Zh. Vychisl. Mat. Mat. Fiz., 40:4 (2000),  517–531
  45. Numerical optimization of solutions to Burgers problem by means of boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997),  1449–1458
  46. Calculation of unsteady flows of saturated vapour in pipelines

    Zh. Vychisl. Mat. Mat. Fiz., 35:6 (1995),  977–987
  47. A class of solutions of the problem of optimizing the nozzle of a water cannon

    Zh. Vychisl. Mat. Mat. Fiz., 34:10 (1994),  1541–1550
  48. Interaction of laser beam with an aluminium vessel and its vapour

    Mat. Model., 2:6 (1990),  19–25
  49. Numerical solution of an inverse problem of the dynamics of a radiating gas with axial symmetry

    Zh. Vychisl. Mat. Mat. Fiz., 27:7 (1987),  1078–1084
  50. Comparison of three methods of calculating the flow of a viscous gas over plates

    Zh. Vychisl. Mat. Mat. Fiz., 27:6 (1987),  940–945
  51. Numerical comparison of various models for metal evaporation

    Zh. Vychisl. Mat. Mat. Fiz., 26:11 (1986),  1740–1743
  52. Calculation of the effect of a laser on a flat barrier and its vapour

    Zh. Vychisl. Mat. Mat. Fiz., 23:6 (1983),  1520–1522
  53. Calculation of the interaction of laser radiation with an aluminium vessel and its vapour

    Zh. Vychisl. Mat. Mat. Fiz., 20:6 (1980),  1513–1524
  54. On a question of the optimal profile of an air foil in a flow of an ideal incompressible fluid

    Zh. Vychisl. Mat. Mat. Fiz., 20:1 (1980),  241–245
  55. Periodic and almost periodic forced oscillations arising from the action of an external force

    Izv. Vyssh. Uchebn. Zaved. Mat., 1960, no. 6,  93–102
  56. On the theory of linear stationary systems with lagging arguments

    Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 6,  86–95
  57. Systems of ordinary differential equations with generalized-homogeneous right-hand sides

    Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 1,  80–88

  58. К 95-летию со дня рождения профессора Юрия Дмитриевича Шмыглевского (1926–2007)

    Zh. Vychisl. Mat. Mat. Fiz., 61:10 (2021),  1587–1592
  59. Памяти Владимира Михайловича Кривцова (1948–2019)

    Zh. Vychisl. Mat. Mat. Fiz., 59:11 (2019),  1998–2002
  60. In memory of professor Yurii Dmitrievich Shmyglevskii (1926–2007)

    Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  928–936
  61. Remarks on the paper “Numerical comparison of various models for metal evaporation”

    Zh. Vychisl. Mat. Mat. Fiz., 27:4 (1987),  636
  62. Corrections: “Calculation of the interaction of laser radiation with an aluminium vessel and its vapour”

    Zh. Vychisl. Mat. Mat. Fiz., 21:2 (1981),  521


© Steklov Math. Inst. of RAS, 2026