RUS  ENG
Full version
PEOPLE

Albu Alla Filippovna

Publications in Math-Net.Ru

  1. FAD technique and differentiation of a composite function

    Zh. Vychisl. Mat. Mat. Fiz., 63:1 (2023),  61–73
  2. On methods for the numerical solution of one spectral problem

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2022, no. 4,  35–49
  3. On one approach to the numerical solution of a coefficient inverse problem

    Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021),  58–62
  4. Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  19–34
  5. Determination of the thermal conductivity from the heat flux on the surface of a three-dimensional body

    Zh. Vychisl. Mat. Mat. Fiz., 61:10 (2021),  1594–1609
  6. Identification of the thermal conductivity coefficient in the three-dimensional case by solving a corresponding optimization problem

    Zh. Vychisl. Mat. Mat. Fiz., 61:9 (2021),  1447–1463
  7. Choice of finite-difference schemes in solving coefficient inverse problems

    Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020),  1643–1655
  8. Application of the fast automatic differentiation technique for solving inverse coefficient problems

    Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020),  18–28
  9. One feature of using the general Lagrange multiplier method

    Zh. Vychisl. Mat. Mat. Fiz., 59:9 (2019),  1482–1494
  10. An approach to determining the variation of a functional with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019),  1277–1295
  11. Identification of the thermal conductivity coefficient using a given surface heat flux

    Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018),  2112–2126
  12. Identification of thermal conductivity coefficient using a given temperature field

    Zh. Vychisl. Mat. Mat. Fiz., 58:10 (2018),  1640–1655
  13. Application of the fast automatic differentiation for calculation of gradients of material's Bulk modulus and Shear modulus

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 1,  95–106
  14. Application of the fast automatic differentiation to the computation of the gradient of the Tersoff potential

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2016, no. 1,  43–49
  15. Control of phase boundary evolution in metal solidification for new thermodynamic parameters of the metal

    Zh. Vychisl. Mat. Mat. Fiz., 56:5 (2016),  768–776
  16. Calculation of the thermal radiation in the modeling of the substance crystallization process in the foundry practice

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2015, no. 1,  47–55
  17. On the efficiency of solving optimal control problems by means of Fast Automatic Differentiation technique

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  20–29
  18. Investigation of the optimal control of metal solidification for a complex-geometry object in a new formulation

    Zh. Vychisl. Mat. Mat. Fiz., 54:12 (2014),  1879–1893
  19. On an algorithm for calculating diffraction integrals

    Zh. Vychisl. Mat. Mat. Fiz., 54:7 (2014),  1078–1095
  20. Investigation of the optimal control problem for metal solidification in a new formulation

    Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014),  734–745
  21. On the influence of setup parameters on the control of solidification in metal casting

    Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013),  238–248
  22. Control of substance solidification in a complex-geometry mold

    Zh. Vychisl. Mat. Mat. Fiz., 52:12 (2012),  2149–2162
  23. Functional gradient evaluation in the optimal control of a complex dynamical system

    Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011),  814–833
  24. Choosing a cost functional and a difference scheme in the optimal control of metal solidification

    Zh. Vychisl. Mat. Mat. Fiz., 51:1 (2011),  24–38
  25. Optimal control for one complex dynamic system, II

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 2,  3–18
  26. Optimal control for one complex dynamic system, I

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 1,  3–21
  27. Determination of functional gradient in an optimal control problem related to metal solidification

    Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009),  51–75
  28. Optimal control of the solidification process in metal casting

    Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  851–862
  29. Mathematical modeling and study of the process of solidification in metal casting

    Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007),  882–902
  30. Optimal control of the melting process and solidification of a substance

    Zh. Vychisl. Mat. Mat. Fiz., 44:8 (2004),  1364–1379
  31. Optimal control of the process of the crystallization of a substance

    Zh. Vychisl. Mat. Mat. Fiz., 44:1 (2004),  38–50
  32. On a melting process with restriction on a cooling velocity

    Mat. Model., 14:8 (2002),  119–123
  33. A modified scheme for analyzing the process of melting

    Zh. Vychisl. Mat. Mat. Fiz., 41:9 (2001),  1434–1443
  34. On optimal control of melting process

    Mat. Model., 12:5 (2000),  114–118
  35. Optimal control of the process of melting

    Zh. Vychisl. Mat. Mat. Fiz., 40:4 (2000),  517–531
  36. Calculation of the gradient in optimal control problems with a discontinuous right-hand side

    Zh. Vychisl. Mat. Mat. Fiz., 35:7 (1995),  1058–1066


© Steklov Math. Inst. of RAS, 2026