RUS  ENG
Full version
PEOPLE

Konnov Igor Vasilyevich

Publications in Math-Net.Ru

  1. Bi-criterial approach to optimization problems with uncertain factors

    Mat. Teor. Igr Pril., 17:1 (2025),  43–58
  2. Dynamic games with incomplete knowledge in metric spaces

    Contributions to Game Theory and Management, 15 (2022),  109–120
  3. Inexact partial linearization methods for network equilibrium problems

    Diskretn. Anal. Issled. Oper., 27:1 (2020),  43–60
  4. Penalty method with descent for problems of convex optiization

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 7,  48–64
  5. Game of constraints for evaluation of guaranteed composite system performance

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 4,  89–94
  6. Solution of clusterization problem by graph optimization methods

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161:3 (2019),  423–437
  7. Conditioned gradient method without line-search

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1,  93–96
  8. Two-level iterative method for non-stationary mixed variational inequalities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10,  50–61
  9. A method of bi-coordinate variations with tolerances and its convergence

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 1,  80–85
  10. Application of penalty method to nonstationary approximation of optimization problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8,  60–68
  11. A Migration Equilibrium Model with Inverse Utility Functions

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:2 (2013),  91–99
  12. On scalarization of vector optimization type problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 9,  8–18
  13. A method for solving a general multi-valued complementarity problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 2,  46–53
  14. Solution method for monotone mixed variational inequalities

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 153:1 (2011),  221–230
  15. A partial regularization method for a generalized primal-dual system of inequalities

    Num. Meth. Prog., 11:4 (2010),  318–325
  16. Descent method with inexact linesearch procedure for mixed variational inequalities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 8,  37–44
  17. A nonlinear descent method for a variational inequality on a nonconvex set

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 1,  66–75
  18. Coordinate relaxation methods for multivalued complementarity problems

    Zh. Vychisl. Mat. Mat. Fiz., 49:6 (2009),  1021–1036
  19. Spatial equilibrium problems for auction-type systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 1,  33–47
  20. A descent method with inexact linear search for nonsmooth equilibrium problems

    Zh. Vychisl. Mat. Mat. Fiz., 48:10 (2008),  1812–1818
  21. Partial regularization method for nonmonotone variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 48:3 (2008),  355–364
  22. Применение вариационных неравенств для моделирования распределенных систем аукционных рынков

    Issled. Inform., 12 (2007),  47–57
  23. О моделировании рынка аукционного типа

    Issled. Inform., 10 (2006),  73–76
  24. Descent method for nonsmooth variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006),  1251–1257
  25. On the convergence of a regularization method for variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 46:4 (2006),  568–575
  26. A regularization method for mixed variational inequalities

    Issled. Inform., 9 (2005),  55–70
  27. A dual-type approximate method for systems of variational inequalities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 12,  35–45
  28. An extension of the Jacobi algorithm for the complementarity problem in the presence of multivalence

    Zh. Vychisl. Mat. Mat. Fiz., 45:7 (2005),  1167–1173
  29. A multivalued mixed complementarity problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 12,  28–36
  30. The proximal method for solving nonmonotonic variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 44:6 (2004),  1030–1038
  31. Variational inequalities with two-sided constraints

    Issled. Inform., 6 (2003),  71–80
  32. An equilibrium model with a demand function of Cobb–Douglas type

    Issled. Inform., 6 (2003),  57–70
  33. An equilibrium model under oligopoly conditions with several technologies

    Issled. Inform., 5 (2003),  57–70
  34. The method of descent over an interval function for nonsmooth equilibrium problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 12,  71–77
  35. $D$-gap functions and descent methods for a class of monotone equilibrium problems

    Lobachevskii J. Math., 13 (2003),  57–65
  36. A system of primal-dual variational inequalities and monotony conditions

    Zh. Vychisl. Mat. Mat. Fiz., 43:10 (2003),  1459–1466
  37. The splitting method with linear search for primal-dual variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 43:4 (2003),  518–532
  38. Equilibrium-type models in economics: from equations to variational inequalities

    Issled. Inform., 4 (2002),  67–76
  39. The dual approach to one class of mixed variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 42:9 (2002),  1324–1337
  40. Generalized variational inequalities on the product of sets

    Issled. Inform., 3 (2001),  111–120
  41. A combined relaxation method for generalized variational inequalities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 12,  46–54
  42. The Lagrange multiplier technique for variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 41:9 (2001),  1344–1357
  43. On an approach to the solution of flow equilibrium problems

    Issled. Inform., 2 (2000),  125–132
  44. Approximate methods for direct-dual variational inequalities of mixed type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 12,  55–66
  45. Properties of gap functions for mixed variational inequalities

    Sib. Zh. Vychisl. Mat., 3:3 (2000),  259–270
  46. Complexity bounds for a combined relaxation method

    Zh. Vychisl. Mat. Mat. Fiz., 40:1 (2000),  72–81
  47. Combined relaxation methods for concave-convex equilibrium problems

    Issled. Inform., 1 (1999),  85–94
  48. On a class of $D$-interval functions for mixed variational inequalities

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 12,  60–64
  49. Realizable feasible quasi-nonexpansive operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 5,  32–36
  50. Combined relaxation methods for variational inequality problems over product sets

    Lobachevskii J. Math., 2 (1999),  3–9
  51. A combined method for variational inequalities with monotone operators

    Zh. Vychisl. Mat. Mat. Fiz., 39:7 (1999),  1091–1097
  52. An inexact combined relaxation method for multivalued inclusions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 12,  58–62
  53. Accelerating the convergence rate of a combined relaxational method

    Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998),  53–60
  54. On systems of variational inequalities

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 12,  79–88
  55. Применение метода типа линеаризации при решении негладких равновесных задач

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 12,  54–62
  56. A general approach to the determination of stationary points and the solution of related problems

    Zh. Vychisl. Mat. Mat. Fiz., 36:5 (1996),  40–50
  57. A combined relaxation method for the search for vector equilibrium

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 12,  54–62
  58. Combined relaxation with decomposition for finding equilibrium points

    Zh. Vychisl. Mat. Mat. Fiz., 35:3 (1995),  352–359
  59. Application of the combined relaxation method to find equilibrium points of quasi-concave-convex functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 12,  70–75
  60. On the rate of convergence of combined relaxation methods

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 12,  89–92
  61. Combined relaxation methods for the search for equilibrium points and solutions of related problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 2,  46–53
  62. A two-level subgradient method for finding saddle points of convex-concave functions

    Zh. Vychisl. Mat. Mat. Fiz., 33:4 (1993),  495–502
  63. Combined subgradient methods for the search for saddle points

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 10,  30–33
  64. Estimates of the labor cost of combined relaxation methods

    Issled. Prikl. Mat., 19 (1992),  34–51
  65. Convergence of relaxation methods for nondifferentiable constrained optimization

    Issled. Prikl. Mat., 17 (1990),  57–71
  66. On properties of supporting and quasi-supporting vectors

    Issled. Prikl. Mat., 17 (1990),  50–57
  67. Application of the successive relaxation method to solve extremal problems with semismooth functions

    Issled. Prikl. Mat., 15 (1988),  24–30
  68. A method of conjugate subgradients for minimization of functionals

    Issled. Prikl. Mat., 12 (1984),  59–62
  69. Application of the method of conjugate subgradients to minimization of quasiconvex functionals

    Issled. Prikl. Mat., 12 (1984),  46–58
  70. Successive relaxation method for minimization of functionals and some efficiency estimates

    Issled. Prikl. Mat., 11:1 (1984),  41–52
  71. An algorithm to find an element of the conjugate cone

    Issled. Prikl. Mat., 11:1 (1984),  32–40
  72. Constrained gradient method for nonsmooth optimization problems

    Issled. Prikl. Mat., 10 (1984),  95–101


© Steklov Math. Inst. of RAS, 2026