|
|
Publications in Math-Net.Ru
-
Bi-criterial approach to optimization problems with uncertain factors
Mat. Teor. Igr Pril., 17:1 (2025), 43–58
-
Dynamic games with incomplete knowledge in metric spaces
Contributions to Game Theory and Management, 15 (2022), 109–120
-
Inexact partial linearization methods for network equilibrium problems
Diskretn. Anal. Issled. Oper., 27:1 (2020), 43–60
-
Penalty method with descent for problems of convex optiization
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 7, 48–64
-
Game of constraints for evaluation of guaranteed composite system performance
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 4, 89–94
-
Solution of clusterization problem by graph optimization methods
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161:3 (2019), 423–437
-
Conditioned gradient method without line-search
Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1, 93–96
-
Two-level iterative method for non-stationary mixed variational inequalities
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10, 50–61
-
A method of bi-coordinate variations with tolerances and its convergence
Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 1, 80–85
-
Application of penalty method to nonstationary approximation of optimization problem
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8, 60–68
-
A Migration Equilibrium Model with Inverse Utility Functions
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:2 (2013), 91–99
-
On scalarization of vector optimization type problems
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 9, 8–18
-
A method for solving a general multi-valued complementarity problem
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 2, 46–53
-
Solution method for monotone mixed variational inequalities
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 153:1 (2011), 221–230
-
A partial regularization method for a generalized primal-dual system of inequalities
Num. Meth. Prog., 11:4 (2010), 318–325
-
Descent method with inexact linesearch procedure for mixed variational inequalities
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 8, 37–44
-
A nonlinear descent method for a variational inequality on a nonconvex set
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 1, 66–75
-
Coordinate relaxation methods for multivalued complementarity problems
Zh. Vychisl. Mat. Mat. Fiz., 49:6 (2009), 1021–1036
-
Spatial equilibrium problems for auction-type systems
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 1, 33–47
-
A descent method with inexact linear search for nonsmooth equilibrium problems
Zh. Vychisl. Mat. Mat. Fiz., 48:10 (2008), 1812–1818
-
Partial regularization method for nonmonotone variational inequalities
Zh. Vychisl. Mat. Mat. Fiz., 48:3 (2008), 355–364
-
Применение вариационных неравенств для моделирования распределенных систем аукционных рынков
Issled. Inform., 12 (2007), 47–57
-
О моделировании рынка аукционного типа
Issled. Inform., 10 (2006), 73–76
-
Descent method for nonsmooth variational inequalities
Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006), 1251–1257
-
On the convergence of a regularization method for variational inequalities
Zh. Vychisl. Mat. Mat. Fiz., 46:4 (2006), 568–575
-
A regularization method for mixed variational inequalities
Issled. Inform., 9 (2005), 55–70
-
A dual-type approximate method for systems of variational inequalities
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 12, 35–45
-
An extension of the Jacobi algorithm for the complementarity problem in the presence of multivalence
Zh. Vychisl. Mat. Mat. Fiz., 45:7 (2005), 1167–1173
-
A multivalued mixed complementarity problem
Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 12, 28–36
-
The proximal method for solving nonmonotonic variational inequalities
Zh. Vychisl. Mat. Mat. Fiz., 44:6 (2004), 1030–1038
-
Variational inequalities with two-sided constraints
Issled. Inform., 6 (2003), 71–80
-
An equilibrium model with a demand function of Cobb–Douglas type
Issled. Inform., 6 (2003), 57–70
-
An equilibrium model under oligopoly conditions with several technologies
Issled. Inform., 5 (2003), 57–70
-
The method of descent over an interval function for nonsmooth equilibrium problems
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 12, 71–77
-
$D$-gap functions and descent methods for a class of monotone equilibrium problems
Lobachevskii J. Math., 13 (2003), 57–65
-
A system of primal-dual variational inequalities and monotony conditions
Zh. Vychisl. Mat. Mat. Fiz., 43:10 (2003), 1459–1466
-
The splitting method with linear search for primal-dual variational inequalities
Zh. Vychisl. Mat. Mat. Fiz., 43:4 (2003), 518–532
-
Equilibrium-type models in economics: from equations to variational inequalities
Issled. Inform., 4 (2002), 67–76
-
The dual approach to one class of mixed variational inequalities
Zh. Vychisl. Mat. Mat. Fiz., 42:9 (2002), 1324–1337
-
Generalized variational inequalities on the product of sets
Issled. Inform., 3 (2001), 111–120
-
A combined relaxation method for generalized variational inequalities
Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 12, 46–54
-
The Lagrange multiplier technique for variational inequalities
Zh. Vychisl. Mat. Mat. Fiz., 41:9 (2001), 1344–1357
-
On an approach to the solution of flow equilibrium problems
Issled. Inform., 2 (2000), 125–132
-
Approximate methods for direct-dual variational inequalities of mixed type
Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 12, 55–66
-
Properties of gap functions for mixed variational inequalities
Sib. Zh. Vychisl. Mat., 3:3 (2000), 259–270
-
Complexity bounds for a combined relaxation method
Zh. Vychisl. Mat. Mat. Fiz., 40:1 (2000), 72–81
-
Combined relaxation methods for concave-convex equilibrium problems
Issled. Inform., 1 (1999), 85–94
-
On a class of $D$-interval functions for mixed variational inequalities
Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 12, 60–64
-
Realizable feasible quasi-nonexpansive operators
Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 5, 32–36
-
Combined relaxation methods for variational inequality problems over product sets
Lobachevskii J. Math., 2 (1999), 3–9
-
A combined method for variational inequalities with monotone operators
Zh. Vychisl. Mat. Mat. Fiz., 39:7 (1999), 1091–1097
-
An inexact combined relaxation method for multivalued inclusions
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 12, 58–62
-
Accelerating the convergence rate of a combined relaxational method
Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998), 53–60
-
On systems of variational inequalities
Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 12, 79–88
-
Применение метода типа линеаризации при решении негладких равновесных задач
Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 12, 54–62
-
A general approach to the determination of stationary points and the solution of related problems
Zh. Vychisl. Mat. Mat. Fiz., 36:5 (1996), 40–50
-
A combined relaxation method for the search for vector equilibrium
Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 12, 54–62
-
Combined relaxation with decomposition for finding equilibrium points
Zh. Vychisl. Mat. Mat. Fiz., 35:3 (1995), 352–359
-
Application of the combined relaxation method to find equilibrium points of quasi-concave-convex functions
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 12, 70–75
-
On the rate of convergence of combined relaxation methods
Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 12, 89–92
-
Combined relaxation methods for the search for equilibrium points and solutions of related problems
Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 2, 46–53
-
A two-level subgradient method for finding saddle points of convex-concave functions
Zh. Vychisl. Mat. Mat. Fiz., 33:4 (1993), 495–502
-
Combined subgradient methods for the search for saddle points
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 10, 30–33
-
Estimates of the labor cost of combined relaxation methods
Issled. Prikl. Mat., 19 (1992), 34–51
-
Convergence of relaxation methods for nondifferentiable constrained optimization
Issled. Prikl. Mat., 17 (1990), 57–71
-
On properties of supporting and quasi-supporting vectors
Issled. Prikl. Mat., 17 (1990), 50–57
-
Application of the successive relaxation method to solve extremal problems with semismooth functions
Issled. Prikl. Mat., 15 (1988), 24–30
-
A method of conjugate subgradients for minimization of functionals
Issled. Prikl. Mat., 12 (1984), 59–62
-
Application of the method of conjugate subgradients to minimization of quasiconvex functionals
Issled. Prikl. Mat., 12 (1984), 46–58
-
Successive relaxation method for minimization of functionals and some efficiency estimates
Issled. Prikl. Mat., 11:1 (1984), 41–52
-
An algorithm to find an element of the conjugate cone
Issled. Prikl. Mat., 11:1 (1984), 32–40
-
Constrained gradient method for nonsmooth optimization problems
Issled. Prikl. Mat., 10 (1984), 95–101
© , 2026