RUS  ENG
Full version
PEOPLE

Osipov Nikolai Nikolaevich

Publications in Math-Net.Ru

  1. On Sharygin triangles with commensurable angles

    J. Sib. Fed. Univ. Math. Phys., 18:6 (2025),  721–732
  2. Series of components of the moduli space of semistable reflexive rank 2 sheaves on ${\Bbb P}^3$

    Sibirsk. Mat. Zh., 66:1 (2025),  60–72
  3. Об уравнении Эйлера $x^3+y^3+z^3=1$ и тройках Рамануджана

    Mat. Pros., Ser. 3, 33 (2024),  57–86
  4. Two series of components of the moduli space of semistable reflexive rank 2 sheaves on the projective space

    Sibirsk. Mat. Zh., 65:1 (2024),  115–124
  5. Задача о треугольнике с заданными длинами биссектрис

    Mat. Pros., Ser. 3, 30 (2023),  209–224
  6. On the number of irreducible components of the moduli space of semistable reflexive rank 2 sheaves on the projective space

    Sibirsk. Mat. Zh., 64:1 (2023),  123–132
  7. On numerical characteristics of some bundles and their isomorphism classes on $\mathbb{P}^3$

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  415–425
  8. An elementary algorithm for solving a diophantine equation of degree four with Runge's condition

    J. Sib. Fed. Univ. Math. Phys., 12:3 (2019),  331–341
  9. О вычислении классических сумм Якобсталя

    Mat. Pros., Ser. 3, 24 (2019),  121–144
  10. О вычислении конечных тригонометрических сумм

    Mat. Pros., Ser. 3, 23 (2019),  174–208
  11. An algorithmic implementation of Runge's method for cubic diophantine equations

    J. Sib. Fed. Univ. Math. Phys., 11:2 (2018),  137–147
  12. Знаменитый предел Арнольда

    Mat. Pros., Ser. 3, 22 (2018),  211–215
  13. On the number of Vedernikov–Ein irreducible components of the moduli space of stable rank 2 bundles on the projective space

    Sibirsk. Mat. Zh., 59:1 (2018),  136–142
  14. Finding ein components in the moduli spaces of stable rank $2$ bundles on the projective $3$-space

    Sibirsk. Mat. Zh., 57:2 (2016),  410–419
  15. Метод Рунге для уравнений 4-й степени: элементарный подход

    Mat. Pros., Ser. 3, 19 (2015),  178–198
  16. Компьютерное доказательство теоремы об инцентрах

    Mat. Pros., Ser. 3, 18 (2014),  205–216
  17. Итерации квадратных радикалов и косинусы дуг, соизмеримых с окружностью

    Mat. Pros., Ser. 3, 18 (2014),  172–179
  18. Approximate integration of modified Riesz potentials

    J. Sib. Fed. Univ. Math. Phys., 6:4 (2013),  479–484
  19. Семь этюдов об одном несовпадении

    Mat. Pros., Ser. 3, 17 (2013),  182–191
  20. Asymptotics of Certain Number-Theoretic Sums

    Mat. Zametki, 83:3 (2008),  472–476
  21. Construction of lattice rules with a trigonometric $d$-property on the basis of extreme lattices

    Zh. Vychisl. Mat. Mat. Fiz., 48:2 (2008),  212–219
  22. Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables

    Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005),  212–223
  23. On minimal cubature formulas with the trigonometric $d$-property in the two-dimensional case

    Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005),  8–16
  24. Minimal and almost minimal rank 1 lattice rules, exact on trigonometric polynomials in two variables

    Sib. Zh. Vychisl. Mat., 7:2 (2004),  125–134
  25. Construction of sequences of the rank $1$ lattice cubature formulas that are exact on trigonometric polynomials

    Zh. Vychisl. Mat. Mat. Fiz., 42:11 (2002),  1627–1635
  26. A version of the discrete Fourier transform with nodes on parallelepipedal lattices

    Zh. Vychisl. Mat. Mat. Fiz., 41:3 (2001),  355–359
  27. On reproducing kernels of a ball

    Zh. Vychisl. Mat. Mat. Fiz., 39:2 (1999),  204–207

  28. Computer assisted proofs

    Math. Ed., 2020, no. 2(94),  42–47
  29. Errata to our article

    J. Sib. Fed. Univ. Math. Phys., 12:1 (2019),  130
  30. Отклик на статью В. М. Журавлёва и П. И. Самовола «Экспоненциальные диофантовы уравнения и сумма цифр числа»

    Mat. Pros., Ser. 3, 21 (2017),  211–212


© Steklov Math. Inst. of RAS, 2026