|
|
Publications in Math-Net.Ru
-
On Sharygin triangles with commensurable angles
J. Sib. Fed. Univ. Math. Phys., 18:6 (2025), 721–732
-
Series of components of the moduli space of semistable reflexive rank 2 sheaves on ${\Bbb P}^3$
Sibirsk. Mat. Zh., 66:1 (2025), 60–72
-
Об уравнении Эйлера $x^3+y^3+z^3=1$ и тройках Рамануджана
Mat. Pros., Ser. 3, 33 (2024), 57–86
-
Two series of components of the moduli space of semistable reflexive rank 2 sheaves on the projective space
Sibirsk. Mat. Zh., 65:1 (2024), 115–124
-
Задача о треугольнике с заданными длинами биссектрис
Mat. Pros., Ser. 3, 30 (2023), 209–224
-
On the number of irreducible components of the moduli space of semistable reflexive rank 2 sheaves on the projective space
Sibirsk. Mat. Zh., 64:1 (2023), 123–132
-
On numerical characteristics of some bundles and their isomorphism classes on $\mathbb{P}^3$
Sib. Èlektron. Mat. Izv., 19:2 (2022), 415–425
-
An elementary algorithm for solving a diophantine equation of degree four with Runge's condition
J. Sib. Fed. Univ. Math. Phys., 12:3 (2019), 331–341
-
О вычислении классических сумм Якобсталя
Mat. Pros., Ser. 3, 24 (2019), 121–144
-
О вычислении конечных тригонометрических сумм
Mat. Pros., Ser. 3, 23 (2019), 174–208
-
An algorithmic implementation of Runge's method for cubic diophantine equations
J. Sib. Fed. Univ. Math. Phys., 11:2 (2018), 137–147
-
Знаменитый предел Арнольда
Mat. Pros., Ser. 3, 22 (2018), 211–215
-
On the number of Vedernikov–Ein irreducible components of the moduli space of stable rank 2 bundles on the projective space
Sibirsk. Mat. Zh., 59:1 (2018), 136–142
-
Finding ein components in the moduli spaces of stable rank $2$ bundles on the projective $3$-space
Sibirsk. Mat. Zh., 57:2 (2016), 410–419
-
Метод Рунге для уравнений 4-й степени: элементарный подход
Mat. Pros., Ser. 3, 19 (2015), 178–198
-
Компьютерное доказательство теоремы об инцентрах
Mat. Pros., Ser. 3, 18 (2014), 205–216
-
Итерации квадратных радикалов и косинусы дуг, соизмеримых с окружностью
Mat. Pros., Ser. 3, 18 (2014), 172–179
-
Approximate integration of modified Riesz potentials
J. Sib. Fed. Univ. Math. Phys., 6:4 (2013), 479–484
-
Семь этюдов об одном несовпадении
Mat. Pros., Ser. 3, 17 (2013), 182–191
-
Asymptotics of Certain Number-Theoretic Sums
Mat. Zametki, 83:3 (2008), 472–476
-
Construction of lattice rules with a trigonometric $d$-property on the basis of extreme lattices
Zh. Vychisl. Mat. Mat. Fiz., 48:2 (2008), 212–219
-
Sets of lattice cubature rules that are optimal in terms of the number of nodes and exact on trigonometric polynomials in three variables
Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005), 212–223
-
On minimal cubature formulas with the trigonometric $d$-property in the two-dimensional case
Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005), 8–16
-
Minimal and almost minimal rank 1 lattice rules, exact on trigonometric polynomials in two variables
Sib. Zh. Vychisl. Mat., 7:2 (2004), 125–134
-
Construction of sequences of the rank $1$ lattice cubature formulas that are exact on trigonometric polynomials
Zh. Vychisl. Mat. Mat. Fiz., 42:11 (2002), 1627–1635
-
A version of the discrete Fourier transform with nodes on parallelepipedal lattices
Zh. Vychisl. Mat. Mat. Fiz., 41:3 (2001), 355–359
-
On reproducing kernels of a ball
Zh. Vychisl. Mat. Mat. Fiz., 39:2 (1999), 204–207
-
Computer assisted proofs
Math. Ed., 2020, no. 2(94), 42–47
-
Errata to our article
J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 130
-
Отклик на статью В. М. Журавлёва и П. И. Самовола «Экспоненциальные диофантовы уравнения и сумма цифр числа»
Mat. Pros., Ser. 3, 21 (2017), 211–212
© , 2026