RUS  ENG
Full version
PEOPLE

Matveenko Valeriy Pavlovich

Publications in Math-Net.Ru

  1. Application of neural networks for localization a concentrated load on the surface of a deformable body based on strain data

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:3 (2025),  469–484
  2. Natural vibration of composite elliptical cylindrical shells filled with fluid

    Izv. Saratov Univ. Math. Mech. Inform., 24:1 (2024),  71–85
  3. Passive damping of vibrations of a cylindrical shell interacting with a flowing fluid

    Izv. Saratov Univ. Math. Mech. Inform., 23:2 (2023),  207–226
  4. Free Vibration Analysis of a Cylindrical Shell of Variable Thickness Partially Filled with Fluid

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  27–40
  5. Natural vibrations of composite cylindrical shells partially filled with fluid

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10:4 (2023),  616–631
  6. Application of electroconducting composite materials for additional damping of smart systems based on piezoelements

    Prikl. Mekh. Tekh. Fiz., 62:5 (2021),  45–57
  7. Finite-element simulation of myocardial electrical excitation

    Prikl. Mekh. Tekh. Fiz., 55:1 (2014),  76–83
  8. Optimization of geometry of elastic bodies in the vicinity of singular points on the example of an adhesive lap joint

    Prikl. Mekh. Tekh. Fiz., 54:5 (2013),  180–186
  9. Stability analysis of cylindrical shells containing a fluid with axial and circumferential velocity components

    Prikl. Mekh. Tekh. Fiz., 53:5 (2012),  155–165
  10. Stability of rotating circular cylindrical shell subject to an axial and rotational fluid flow

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2012, no. 9(100),  84–97
  11. Метод и результаты расчета сингулярности напряжений в вершине конуса при смешанных граничных условиях

    Matem. Mod. Kraev. Zadachi, 1 (2010),  193–195
  12. Конечно-элементный подход для решения задач в рамках несимметричной теории упругости

    Matem. Mod. Kraev. Zadachi, 1 (2010),  190–192
  13. Устойчивость вращающихся круговых цилиндрических оболочек, содержащих текущую и вращающуюся жидкость

    Matem. Mod. Kraev. Zadachi, 1 (2010),  70–73
  14. Analysis of the wave solution of the elastokinetic equations of a Cosserat continuum for the case of bulk plane waves

    Prikl. Mekh. Tekh. Fiz., 49:2 (2008),  196–203
  15. Numerical modelling of the stability of loaded shells of revolution containing fluid flows

    Prikl. Mekh. Tekh. Fiz., 49:2 (2008),  185–195
  16. Constructing an analytical solution for Lamb waves using the Cosserat continuum approach

    Prikl. Mekh. Tekh. Fiz., 48:1 (2007),  143–150
  17. Spectral problem for shells with fluid

    Prikl. Mekh. Tekh. Fiz., 46:6 (2005),  128–135
  18. Construction and analysis of an analytical solution for the surface Rayleigh wave within the framework of the Cosserat continuum

    Prikl. Mekh. Tekh. Fiz., 46:4 (2005),  116–124
  19. Finite-element solution of panel flutter of shell structures

    Mat. Model., 14:12 (2002),  55–71
  20. Exact analytical solution of the Kirsch problem within the framework of the cosserat continuum and pseudocontinuum

    Prikl. Mekh. Tekh. Fiz., 42:4 (2001),  145–154
  21. Solution of spectral problems for multilayer shells of revolution in the framework of the generalized Timoshenko theory of shells

    Mat. Model., 12:5 (2000),  55–60
  22. The method of geometrical immersion and calculations for boundary-value elastic problem

    Mat. Model., 12:5 (2000),  49–54

  23. Erratum to: Constructing an analytical solution for lamb waves using the Cosserat continuum approach

    Prikl. Mekh. Tekh. Fiz., 48:3 (2007),  199


© Steklov Math. Inst. of RAS, 2026