|
|
Publications in Math-Net.Ru
-
Application of neural networks for localization a concentrated load on the surface of a deformable body based on strain data
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:3 (2025), 469–484
-
Natural vibration of composite elliptical cylindrical shells filled with fluid
Izv. Saratov Univ. Math. Mech. Inform., 24:1 (2024), 71–85
-
Passive damping of vibrations of a cylindrical shell interacting with a flowing fluid
Izv. Saratov Univ. Math. Mech. Inform., 23:2 (2023), 207–226
-
Free Vibration Analysis of a Cylindrical Shell of Variable Thickness Partially Filled with Fluid
Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023), 27–40
-
Natural vibrations of composite cylindrical shells partially filled with fluid
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10:4 (2023), 616–631
-
Application of electroconducting composite materials for additional damping of smart systems based on piezoelements
Prikl. Mekh. Tekh. Fiz., 62:5 (2021), 45–57
-
Finite-element simulation of myocardial electrical excitation
Prikl. Mekh. Tekh. Fiz., 55:1 (2014), 76–83
-
Optimization of geometry of elastic bodies in the vicinity of singular points on the example of an adhesive lap joint
Prikl. Mekh. Tekh. Fiz., 54:5 (2013), 180–186
-
Stability analysis of cylindrical shells containing a fluid with axial and circumferential velocity components
Prikl. Mekh. Tekh. Fiz., 53:5 (2012), 155–165
-
Stability of rotating circular cylindrical shell subject to an axial and rotational fluid flow
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2012, no. 9(100), 84–97
-
Метод и результаты расчета сингулярности напряжений в вершине конуса при смешанных граничных условиях
Matem. Mod. Kraev. Zadachi, 1 (2010), 193–195
-
Конечно-элементный подход для решения задач в рамках несимметричной теории упругости
Matem. Mod. Kraev. Zadachi, 1 (2010), 190–192
-
Устойчивость вращающихся круговых цилиндрических оболочек, содержащих текущую и вращающуюся жидкость
Matem. Mod. Kraev. Zadachi, 1 (2010), 70–73
-
Analysis of the wave solution of the elastokinetic equations of a Cosserat continuum for the case of bulk plane waves
Prikl. Mekh. Tekh. Fiz., 49:2 (2008), 196–203
-
Numerical modelling of the stability of loaded shells of revolution containing fluid flows
Prikl. Mekh. Tekh. Fiz., 49:2 (2008), 185–195
-
Constructing an analytical solution for Lamb waves using the Cosserat continuum approach
Prikl. Mekh. Tekh. Fiz., 48:1 (2007), 143–150
-
Spectral problem for shells with fluid
Prikl. Mekh. Tekh. Fiz., 46:6 (2005), 128–135
-
Construction and analysis of an analytical solution for the surface Rayleigh wave within the framework of the Cosserat continuum
Prikl. Mekh. Tekh. Fiz., 46:4 (2005), 116–124
-
Finite-element solution of panel flutter of shell structures
Mat. Model., 14:12 (2002), 55–71
-
Exact analytical solution of the Kirsch problem within the framework of the cosserat continuum and pseudocontinuum
Prikl. Mekh. Tekh. Fiz., 42:4 (2001), 145–154
-
Solution of spectral problems for multilayer shells of revolution in the framework of the generalized Timoshenko theory of shells
Mat. Model., 12:5 (2000), 55–60
-
The method of geometrical immersion and calculations for boundary-value elastic problem
Mat. Model., 12:5 (2000), 49–54
-
Erratum to: Constructing an analytical solution for lamb waves using the Cosserat continuum approach
Prikl. Mekh. Tekh. Fiz., 48:3 (2007), 199
© , 2026