|
|
Publications in Math-Net.Ru
-
Projection matrices revisited: a potential-growth indicator and the merit of indication
Fundam. Prikl. Mat., 17:6 (2012), 41–63
-
Nonnegative matrices as a tool to model population dynamics: Classical models and contemporary expansions
Fundam. Prikl. Mat., 13:4 (2007), 145–164
-
Three sources and three constituents of the formalism for a population with discrete age and stage structures
Mat. Model., 14:12 (2002), 11–22
-
Mathematics of the Lefkovitch model: the reproductive potential and asymptotic cycles
Mat. Model., 14:10 (2002), 116–126
-
Dynamical compartment models of the carbon cycle in a transitional bog ecosystem
Mat. Model., 13:4 (2001), 3–18
-
Relations, properties and invariant transformations of $D$- and $aD$-stable matrices
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 6, 40–43
-
$D$-stability of 4-by-4 matrices
Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998), 1429–1435
-
Modelling ecological systems by a given “storage-flow” diagram
Mat. Model., 9:9 (1997), 3–17
-
Structural openness of subsets of stable matrices
Dokl. Akad. Nauk, 349:2 (1996), 169–171
-
Once more on the nonlinear Leslie model: the asymptotic behavior
of trajectories in primitive and imprimitive cases
Dokl. Akad. Nauk SSSR, 318:5 (1991), 1077–1081
-
Indecomposability and imprimitivity of nonnegative matrices with a
block structure
Dokl. Akad. Nauk SSSR, 308:1 (1989), 46–49
-
Do diagonally stable matrices without a dominating diagonal
exist?
Dokl. Akad. Nauk SSSR, 301:3 (1988), 543–545
-
On the hierarchy among the subsets of stable matrices
Dokl. Akad. Nauk SSSR, 290:1 (1986), 11–14
-
Necessary and sufficient conditions for sign stability of matrices
Dokl. Akad. Nauk SSSR, 264:3 (1982), 542–546
-
Investigation of a system of $n$ “predator-prey” pairs coupled by competition
Dokl. Akad. Nauk SSSR, 224:3 (1975), 529–531
-
On the stability of a class of matrices arising in the mathematical theory of biological associations
Dokl. Akad. Nauk SSSR, 221:6 (1975), 1272–1275
-
Нелинейный мир А. С. Комарова
Computer Research and Modeling, 8:2 (2016), 205–212
© , 2026