RUS  ENG
Full version
PEOPLE

Logofet Dmitrii Olegovich

Publications in Math-Net.Ru

  1. Projection matrices revisited: a potential-growth indicator and the merit of indication

    Fundam. Prikl. Mat., 17:6 (2012),  41–63
  2. Nonnegative matrices as a tool to model population dynamics: Classical models and contemporary expansions

    Fundam. Prikl. Mat., 13:4 (2007),  145–164
  3. Three sources and three constituents of the formalism for a population with discrete age and stage structures

    Mat. Model., 14:12 (2002),  11–22
  4. Mathematics of the Lefkovitch model: the reproductive potential and asymptotic cycles

    Mat. Model., 14:10 (2002),  116–126
  5. Dynamical compartment models of the carbon cycle in a transitional bog ecosystem

    Mat. Model., 13:4 (2001),  3–18
  6. Relations, properties and invariant transformations of $D$- and $aD$-stable matrices

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 6,  40–43
  7. $D$-stability of 4-by-4 matrices

    Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998),  1429–1435
  8. Modelling ecological systems by a given “storage-flow” diagram

    Mat. Model., 9:9 (1997),  3–17
  9. Structural openness of subsets of stable matrices

    Dokl. Akad. Nauk, 349:2 (1996),  169–171
  10. Once more on the nonlinear Leslie model: the asymptotic behavior of trajectories in primitive and imprimitive cases

    Dokl. Akad. Nauk SSSR, 318:5 (1991),  1077–1081
  11. Indecomposability and imprimitivity of nonnegative matrices with a block structure

    Dokl. Akad. Nauk SSSR, 308:1 (1989),  46–49
  12. Do diagonally stable matrices without a dominating diagonal exist?

    Dokl. Akad. Nauk SSSR, 301:3 (1988),  543–545
  13. On the hierarchy among the subsets of stable matrices

    Dokl. Akad. Nauk SSSR, 290:1 (1986),  11–14
  14. Necessary and sufficient conditions for sign stability of matrices

    Dokl. Akad. Nauk SSSR, 264:3 (1982),  542–546
  15. Investigation of a system of $n$ “predator-prey” pairs coupled by competition

    Dokl. Akad. Nauk SSSR, 224:3 (1975),  529–531
  16. On the stability of a class of matrices arising in the mathematical theory of biological associations

    Dokl. Akad. Nauk SSSR, 221:6 (1975),  1272–1275

  17. Нелинейный мир А. С. Комарова

    Computer Research and Modeling, 8:2 (2016),  205–212


© Steklov Math. Inst. of RAS, 2026