RUS  ENG
Full version
PEOPLE

Voropaeva O F

Publications in Math-Net.Ru

  1. The relationship between nonlinear systems of delay differential equations and high-dimensional ODE systems in mathematical models of gene networks

    Russian Journal of Cybernetics, 6:4 (2025),  127–133
  2. Numerical modelling of myocardial infarction in multivessel coronary lesion. II. Patterns of formation of large-scale damages and structures

    Mat. Biolog. Bioinform., 19:2 (2024),  497–532
  3. Numerical modeling of myocardial infarction in multivessel coronary lesion. I. Analysis of some model scenarios

    Mat. Biolog. Bioinform., 19:1 (2024),  183–211
  4. Numerical modelling of myocardial infarction. II. Analysis of macrophage polarization mechanism as a therapeutic target

    Mat. Biolog. Bioinform., 18:2 (2023),  367–404
  5. Numerical modelling of myocardial infarction. I. Analysis of spatiotemporal aspects of the local inflammatory response

    Mat. Biolog. Bioinform., 18:1 (2023),  49–71
  6. The trigger model of the dynamics of acute and chronic aseptic inflammation

    Mat. Biolog. Bioinform., 17:2 (2022),  266–288
  7. Numerical simulation inflammatory phase of myocardial infarction

    Prikl. Mekh. Tekh. Fiz., 62:3 (2021),  105–117
  8. Mathematical model of the aseptic inflammation dynamics

    Sib. Zh. Ind. Mat., 23:4 (2020),  30–47
  9. Hyperactivation of the p53–microRNA signaling pathway: mathematical model of variants of antitumor therapy

    Mat. Biolog. Bioinform., 14:1 (2019),  355–372
  10. A numerical model of inflammation dynamics in the core of myocardial infarction

    Sib. Zh. Ind. Mat., 22:2 (2019),  13–26
  11. Mathematical modeling of positive connection functioning in the tumor markers p53–microRNA system

    Sib. Zh. Vychisl. Mat., 22:3 (2019),  325–344
  12. Deregulation of p53-dependent microRNAs: the results of mathematical modeling

    Mat. Biolog. Bioinform., 12:1 (2017),  151–175
  13. The passage from delay equation to ODE system in the model of the tumor markers network

    Mat. Model., 29:9 (2017),  135–154
  14. Numerical analysis of turbulence decay in momentumless wakes behind the sphere and the prolate body of revolution

    Mat. Model., 28:1 (2016),  78–96
  15. Numerical simulation of ultradian oscillations in p53-Mdm2-network under stress conditions

    Mat. Model., 26:11 (2014),  105–122
  16. Improved two-equation turbulence models of free stratified turbulence

    Mat. Model., 26:7 (2014),  97–113
  17. Numerical models of the turbulent mixing zone dynamics in pycnocline

    Mat. Model., 22:5 (2010),  69–87
  18. Numerical modeling of interaction between a turbulent mixing zone and a local perturbation of the density field in a pycnocline

    Prikl. Mekh. Tekh. Fiz., 51:2 (2010),  49–60
  19. The anisotropic decay of turbulence in a far momentumless wake in a stratified medium

    Mat. Model., 20:10 (2008),  23–38
  20. A hierarchy of second- and third-order turbulence models for momentumless wakes behind an axisymmetric bodies

    Mat. Model., 19:3 (2007),  29–51
  21. The anisotropic decay of turbulence in far momentumless wake in linearly stratified fluid

    Mat. Model., 15:1 (2003),  101–110
  22. Internal waves generated by turbulent wakes behind towed and self-propelled bodies in linearly stratified medium

    Mat. Model., 12:10 (2000),  77–94
  23. Internal waves generated by momentumless turbulent wake in linearly stratified fluid

    Mat. Model., 10:6 (1998),  75–89
  24. Propagation of a passive admixture from an instantaneous localized source in the turbulent mixing zone in a pycnocline

    Prikl. Mekh. Tekh. Fiz., 39:4 (1998),  76–83
  25. Numerical model of the dynamics of a momentumless turbulent wake in a pycnocline

    Prikl. Mekh. Tekh. Fiz., 38:3 (1997),  69–86


© Steklov Math. Inst. of RAS, 2026