RUS  ENG
Full version
PEOPLE

Romanyukha Aleksei Alekseevich

Publications in Math-Net.Ru

  1. Mathematical model of COVID-19 course and severity prediction

    Mat. Model., 35:5 (2023),  31–46
  2. Transmission of acute respiratory infections in a city: agent-based approach

    Mat. Biolog. Bioinform., 15:2 (2020),  338–356
  3. Comparison of modeling schemes for natural course of pulmonary tuberculosis

    Mat. Biolog. Bioinform., 14:2 (2019),  570–587
  4. Modeling of gender differences in tuberculosis prevalence

    Mat. Biolog. Bioinform., 13:2 (2018),  308–321
  5. Evaluating the efficiency of cell mechanisms and systems

    Avtomat. i Telemekh., 2016, no. 5,  136–147
  6. Mathematical model of cellular transport network self-organization and functioning

    Mat. Model., 27:3 (2015),  49–62
  7. Mathematical model of spread of HIV-infection in population with dynamic risk of infection

    Mat. Model., 25:1 (2013),  45–64
  8. Modeling spread of HIV as result of social maladjustment IN population

    UBS, 34 (2011),  227–253
  9. A model of tuberculosis epidemiology. Data analysis and estimation of parameters

    Mat. Model., 20:8 (2008),  107–128
  10. Mathematical modeling of tuberculosis propagation and patient detection

    Avtomat. i Telemekh., 2007, no. 9,  145–160
  11. Mathematical models of tuberculosis extension and control of it (review)

    Mat. Biolog. Bioinform., 2:2 (2007),  188–318
  12. Modeling of t cell population development and estimation of resource allocation effectiveness

    Mat. Model., 19:11 (2007),  25–42
  13. The Energy Criterion for Quality of Immune Defence and Pathogenicity of Microorganisms

    Avtomat. i Telemekh., 2003, no. 6,  141–151
  14. Individual-based model for dynamics of infection in nonhomogeneous population

    Mat. Model., 15:5 (2003),  95–105
  15. A variational principle for modeling infection immunity by the example of pneumonia

    Mat. Model., 13:8 (2001),  65–84
  16. Electron paramagnetic resonance and related phenomena in high-temperature superconductors

    UFN, 161:10 (1991),  37–78


© Steklov Math. Inst. of RAS, 2026