RUS  ENG
Full version
PEOPLE

Trubetskov Mikhail Kirillovich

Publications in Math-Net.Ru

  1. Hybrid methods for modeling waveguides containing local inhomogeneous insets of multilayer structure

    Num. Meth. Prog., 17:3 (2016),  268–279
  2. Low-frequency approximation and the choice of optimal elastic parameters for two-layer blast protection jackets

    Num. Meth. Prog., 7:1 (2006),  23–35
  3. Stabilization of computational algorithms for the characterization of thin film coatings

    Num. Meth. Prog., 6:1 (2005),  109–117
  4. Reconstruction of contamination intensity in sewage by the integral-sorption method (ii). Model of ion-change sorption

    Mat. Model., 15:5 (2003),  12–16
  5. Reconstruction of contamination intensity in sewage by the integral-sorption method

    Mat. Model., 9:7 (1997),  36–43
  6. Non-local optimization method for multilayer optical systems

    Mat. Model., 7:8 (1995),  105–127
  7. Second-order optimization methods in the synthesis of multilayer coatings

    Zh. Vychisl. Mat. Mat. Fiz., 33:10 (1993),  1518–1535
  8. Reduced Galerkin's method application to calculations of eigenwaves in open waveguides

    Mat. Model., 3:7 (1991),  111–123
  9. Application of the incomplete Galerkin method for solving problems of the diffraction of electromagnetic waves by a nonhomogeneous cylinder

    Zh. Vychisl. Mat. Mat. Fiz., 30:6 (1990),  894–909
  10. Optimization of the form of a periodic interface between two homogeneous media with different dielectric permeabilities

    Zh. Vychisl. Mat. Mat. Fiz., 29:1 (1989),  75–81
  11. The problem of reducing acoustic noise in the interior of a car

    Zh. Vychisl. Mat. Mat. Fiz., 28:10 (1988),  1530–1539
  12. Mathematical modeling of a production process

    Zh. Vychisl. Mat. Mat. Fiz., 23:3 (1983),  681–692
  13. Quasioptimality and residual criteria for systems of linear algebraic equations

    Zh. Vychisl. Mat. Mat. Fiz., 22:6 (1982),  1287–1297
  14. A. N. Tikhonov's regularizing operators in some ill-posed problems for differential equations

    Differ. Uravn., 17:10 (1981),  1842–1850


© Steklov Math. Inst. of RAS, 2026