|
|
Publications in Math-Net.Ru
-
Full and elementary nets over the field of fractions of a Dedekind domain
Algebra i Analiz, 37:5 (2025), 198–216
-
Full and elementary nets over the field of fractions of a ring with the QR-property
Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024), 77–83
-
On the structure of nets over quadratic fields
Vladikavkaz. Mat. Zh., 24:3 (2022), 87–95
-
Closed elementary nets over a field of characteristic 0
Sibirsk. Mat. Zh., 62:2 (2021), 326–332
-
About subgroups rich in transvections
Vladikavkaz. Mat. Zh., 23:4 (2021), 50–55
-
On the structure of elementary nets over quadratic fields
Vladikavkaz. Mat. Zh., 22:4 (2020), 87–91
-
On sufficient conditions for the closure of an elementary net
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:2 (2020), 230–235
-
Elementary nets (carpets) over a discrete valuation ring
J. Sib. Fed. Univ. Math. Phys., 12:6 (2019), 728–735
-
Decomposition of elementary transvection in elementary net group
Vladikavkaz. Mat. Zh., 21:3 (2019), 24–30
-
Embedding an elementary net into a gap of nets
Zap. Nauchn. Sem. POMI, 484 (2019), 115–120
-
On a question about generalized congruence subgroups
J. Sib. Fed. Univ. Math. Phys., 11:1 (2018), 66–69
-
An embedding theorem for an elementary net
Vladikavkaz. Mat. Zh., 20:2 (2018), 57–61
-
On a question about generalized congruence subgroups. I
Zap. Nauchn. Sem. POMI, 470 (2018), 105–110
-
Subgroups, of Chevalley Groups over a Locally Finite Field, Defined by a Family of Additive Subgroups
Mat. Zametki, 102:6 (2017), 857–865
-
$k$-invariant nets over an algebraic extension of a field $k$
Sibirsk. Mat. Zh., 58:1 (2017), 143–147
-
Full and elementary nets over the quotient field of a principal ideal ring
Zap. Nauchn. Sem. POMI, 455 (2017), 42–51
-
An elementary net associated with the elementary group
Vladikavkaz. Mat. Zh., 18:3 (2016), 31–34
-
Elementary transvections in the overgroups of a non-split maximal torus
Vladikavkaz. Mat. Zh., 17:4 (2015), 11–17
-
Decomposition of elementary transvection in elementary group
Zap. Nauchn. Sem. POMI, 435 (2015), 33–41
-
Transvection modules in the overgroups of a non-split maximal torus
Vladikavkaz. Mat. Zh., 16:3 (2014), 3–8
-
Normalizer of an elementary net group associated with a non-split torus in the general linear group over a field
Zap. Nauchn. Sem. POMI, 423 (2014), 105–112
-
Subgroups of the Chevalley groups and Lie rings definable by a collection of additive subgroups of the initial ring
Fundam. Prikl. Mat., 18:1 (2013), 75–84
-
Decomposition of transvection in elementary group
J. Sib. Fed. Univ. Math. Phys., 5:3 (2012), 388–392
-
Elementary nets in linear groups
Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 134–141
-
Closed pairs
Vladikavkaz. Mat. Zh., 13:3 (2011), 36–41
-
Nets associated with the elementary nets
Vladikavkaz. Mat. Zh., 12:4 (2010), 39–43
-
On maximal subgroups of the general linear group over rational functions field
Vladikavkaz. Mat. Zh., 12:4 (2010), 12–14
-
On subgroups of the general linear group containing a non-split maximal torus
Zap. Nauchn. Sem. POMI, 375 (2010), 130–139
-
Transvections in the subgroups of the general linear group containing a non-split maximal torus
Algebra i Analiz, 21:5 (2009), 70–86
-
Трансвекции в надгруппах нерасщепимого тора
Vladikavkaz. Mat. Zh., 11:4 (2009), 22–31
-
Intermediate subgroups in the second-order general linear group over the field of rational functions containing a square torus
Vladikavkaz. Mat. Zh., 10:1 (2008), 27–34
-
A group acting on the triangle nets
Zap. Nauchn. Sem. POMI, 349 (2007), 146–149
-
Subgroups that contain a torus, which are associated with the quotient field of a unique factorization ring
Vladikavkaz. Mat. Zh., 5:3 (2003), 31–39
-
Maximal subgroups containing a torus, connected to the field of fractions of a Dedekind domian
Zap. Nauchn. Sem. POMI, 289 (2002), 149–153
-
Garlands containing the general linear groups over a intermediate field
Zap. Nauchn. Sem. POMI, 236 (1997), 34–41
-
The subgroups of the group $\mathrm{GL}(2,k)$ that contain a nonsplit maximal torus
Zap. Nauchn. Sem. POMI, 211 (1994), 136–145
-
The normalizer of the automorphism group of a module arising under extension of the base ring
Zap. Nauchn. Sem. POMI, 211 (1994), 133–135
-
Lattices of subgroups of $GL(n,\mathbb{Q})$, containing a non-split torus
Zap. Nauchn. Sem. LOMI, 191 (1991), 24–43
-
Subgroups of the group $GL(2,\mathbf{Q})$ that contain a nonsplittable maximal torus
Dokl. Akad. Nauk SSSR, 312:1 (1990), 36–38
-
A description of $D$-complete subgroups of the general linear group over field of three elements
Zap. Nauchn. Sem. LOMI, 103 (1980), 76–78
-
Some examples of non-monomial linear groups without transvections
Zap. Nauchn. Sem. LOMI, 71 (1977), 153–154
-
To the 65-th anniversary of prof. A. G. Kusraev
Vladikavkaz. Mat. Zh., 20:2 (2018), 111–119
-
Mazurov Viktor Danilovich (on the occasion of his 70th anniversary)
Vladikavkaz. Mat. Zh., 15:1 (2013), 88–89
-
Nikolai Aleksandrovich Vavilov (on his 60th birthday)
Vladikavkaz. Mat. Zh., 14:4 (2012), 99–100
-
Amurkhan Khadzhumarovich Gudiev (1932–1999) (on the seventieth anniversary of his birth)
Vladikavkaz. Mat. Zh., 4:2 (2002), 5–10
© , 2026