RUS  ENG
Full version
PEOPLE

Koibaev Vladimir Amurkhanovich

Publications in Math-Net.Ru

  1. Full and elementary nets over the field of fractions of a Dedekind domain

    Algebra i Analiz, 37:5 (2025),  198–216
  2. Full and elementary nets over the field of fractions of a ring with the QR-property

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  77–83
  3. On the structure of nets over quadratic fields

    Vladikavkaz. Mat. Zh., 24:3 (2022),  87–95
  4. Closed elementary nets over a field of characteristic 0

    Sibirsk. Mat. Zh., 62:2 (2021),  326–332
  5. About subgroups rich in transvections

    Vladikavkaz. Mat. Zh., 23:4 (2021),  50–55
  6. On the structure of elementary nets over quadratic fields

    Vladikavkaz. Mat. Zh., 22:4 (2020),  87–91
  7. On sufficient conditions for the closure of an elementary net

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:2 (2020),  230–235
  8. Elementary nets (carpets) over a discrete valuation ring

    J. Sib. Fed. Univ. Math. Phys., 12:6 (2019),  728–735
  9. Decomposition of elementary transvection in elementary net group

    Vladikavkaz. Mat. Zh., 21:3 (2019),  24–30
  10. Embedding an elementary net into a gap of nets

    Zap. Nauchn. Sem. POMI, 484 (2019),  115–120
  11. On a question about generalized congruence subgroups

    J. Sib. Fed. Univ. Math. Phys., 11:1 (2018),  66–69
  12. An embedding theorem for an elementary net

    Vladikavkaz. Mat. Zh., 20:2 (2018),  57–61
  13. On a question about generalized congruence subgroups. I

    Zap. Nauchn. Sem. POMI, 470 (2018),  105–110
  14. Subgroups, of Chevalley Groups over a Locally Finite Field, Defined by a Family of Additive Subgroups

    Mat. Zametki, 102:6 (2017),  857–865
  15. $k$-invariant nets over an algebraic extension of a field $k$

    Sibirsk. Mat. Zh., 58:1 (2017),  143–147
  16. Full and elementary nets over the quotient field of a principal ideal ring

    Zap. Nauchn. Sem. POMI, 455 (2017),  42–51
  17. An elementary net associated with the elementary group

    Vladikavkaz. Mat. Zh., 18:3 (2016),  31–34
  18. Elementary transvections in the overgroups of a non-split maximal torus

    Vladikavkaz. Mat. Zh., 17:4 (2015),  11–17
  19. Decomposition of elementary transvection in elementary group

    Zap. Nauchn. Sem. POMI, 435 (2015),  33–41
  20. Transvection modules in the overgroups of a non-split maximal torus

    Vladikavkaz. Mat. Zh., 16:3 (2014),  3–8
  21. Normalizer of an elementary net group associated with a non-split torus in the general linear group over a field

    Zap. Nauchn. Sem. POMI, 423 (2014),  105–112
  22. Subgroups of the Chevalley groups and Lie rings definable by a collection of additive subgroups of the initial ring

    Fundam. Prikl. Mat., 18:1 (2013),  75–84
  23. Decomposition of transvection in elementary group

    J. Sib. Fed. Univ. Math. Phys., 5:3 (2012),  388–392
  24. Elementary nets in linear groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  134–141
  25. Closed pairs

    Vladikavkaz. Mat. Zh., 13:3 (2011),  36–41
  26. Nets associated with the elementary nets

    Vladikavkaz. Mat. Zh., 12:4 (2010),  39–43
  27. On maximal subgroups of the general linear group over rational functions field

    Vladikavkaz. Mat. Zh., 12:4 (2010),  12–14
  28. On subgroups of the general linear group containing a non-split maximal torus

    Zap. Nauchn. Sem. POMI, 375 (2010),  130–139
  29. Transvections in the subgroups of the general linear group containing a non-split maximal torus

    Algebra i Analiz, 21:5 (2009),  70–86
  30. Трансвекции в надгруппах нерасщепимого тора

    Vladikavkaz. Mat. Zh., 11:4 (2009),  22–31
  31. Intermediate subgroups in the second-order general linear group over the field of rational functions containing a square torus

    Vladikavkaz. Mat. Zh., 10:1 (2008),  27–34
  32. A group acting on the triangle nets

    Zap. Nauchn. Sem. POMI, 349 (2007),  146–149
  33. Subgroups that contain a torus, which are associated with the quotient field of a unique factorization ring

    Vladikavkaz. Mat. Zh., 5:3 (2003),  31–39
  34. Maximal subgroups containing a torus, connected to the field of fractions of a Dedekind domian

    Zap. Nauchn. Sem. POMI, 289 (2002),  149–153
  35. Garlands containing the general linear groups over a intermediate field

    Zap. Nauchn. Sem. POMI, 236 (1997),  34–41
  36. The subgroups of the group $\mathrm{GL}(2,k)$ that contain a nonsplit maximal torus

    Zap. Nauchn. Sem. POMI, 211 (1994),  136–145
  37. The normalizer of the automorphism group of a module arising under extension of the base ring

    Zap. Nauchn. Sem. POMI, 211 (1994),  133–135
  38. Lattices of subgroups of $GL(n,\mathbb{Q})$, containing a non-split torus

    Zap. Nauchn. Sem. LOMI, 191 (1991),  24–43
  39. Subgroups of the group $GL(2,\mathbf{Q})$ that contain a nonsplittable maximal torus

    Dokl. Akad. Nauk SSSR, 312:1 (1990),  36–38
  40. A description of $D$-complete subgroups of the general linear group over field of three elements

    Zap. Nauchn. Sem. LOMI, 103 (1980),  76–78
  41. Some examples of non-monomial linear groups without transvections

    Zap. Nauchn. Sem. LOMI, 71 (1977),  153–154

  42. To the 65-th anniversary of prof. A. G. Kusraev

    Vladikavkaz. Mat. Zh., 20:2 (2018),  111–119
  43. Mazurov Viktor Danilovich (on the occasion of his 70th anniversary)

    Vladikavkaz. Mat. Zh., 15:1 (2013),  88–89
  44. Nikolai Aleksandrovich Vavilov (on his 60th birthday)

    Vladikavkaz. Mat. Zh., 14:4 (2012),  99–100
  45. Amurkhan Khadzhumarovich Gudiev (1932–1999) (on the seventieth anniversary of his birth)

    Vladikavkaz. Mat. Zh., 4:2 (2002),  5–10


© Steklov Math. Inst. of RAS, 2026