RUS  ENG
Full version
PEOPLE

Bekmaganbetov Kuanysh Abdrakhmanovich

Publications in Math-Net.Ru

  1. Nikol’skii–Besov spaces with a dominant mixed derivative and with a mixed metric: interpolation properties, embedding theorems, trace and extension theorems

    Eurasian Math. J., 16:2 (2025),  30–41
  2. Homogenization of attractors to reaction–diffusion equations in domains with rapidly oscillating boundary: supercritical case

    Ufimsk. Mat. Zh., 17:2 (2025),  94–107
  3. On attractors of Ginzburg–Landau equations in domain with locally periodic microstructure. Subcritical, critical and supercritical cases

    Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023),  9–14
  4. On asymptotics of attractors to Navier–Stockes system in anisotropic medium with small periodic obstacles

    Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023),  42–46
  5. Strong convergence of attractors of reaction-diffusion system with rapidly oscillating terms in an orthotropic porous medium

    Izv. RAN. Ser. Mat., 86:6 (2022),  47–78
  6. On attractors of 2D Navier–Stockes system in a medium with anisotropic variable viscosity and periodic obstacles

    Zap. Nauchn. Sem. POMI, 519 (2022),  10–34
  7. On attractors of reaction–diffusion equations in a porous orthotropic medium

    Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  10–15
  8. Order of the orthoprojection widths of the anisotropic Nikol'skii–Besov classes in the anisotropic Lorentz space

    Eurasian Math. J., 7:3 (2016),  8–16
  9. Embedding theorems for anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$

    Izv. RAN. Ser. Mat., 73:4 (2009),  3–16
  10. About order of approximation of Besov classes in metric of anisotropic Lorentz spaces

    Ufimsk. Mat. Zh., 1:2 (2009),  9–16
  11. On Interpolation and Embedding Theorems for the Spaces $\overset{\star}{\mathfrak B}{}_{p\tau}^{\sigma q}(\Omega)$

    Mat. Zametki, 84:5 (2008),  788–790


© Steklov Math. Inst. of RAS, 2026