|
|
Publications in Math-Net.Ru
-
Nikol’skii–Besov spaces with a dominant mixed derivative and with a mixed metric: interpolation properties, embedding theorems, trace and extension theorems
Eurasian Math. J., 16:2 (2025), 30–41
-
Homogenization of attractors to reaction–diffusion equations in domains with rapidly oscillating boundary: supercritical case
Ufimsk. Mat. Zh., 17:2 (2025), 94–107
-
On attractors of Ginzburg–Landau equations in domain with locally periodic microstructure. Subcritical, critical and supercritical cases
Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023), 9–14
-
On asymptotics of attractors to Navier–Stockes system in anisotropic medium with small periodic obstacles
Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023), 42–46
-
Strong convergence of attractors of reaction-diffusion system with rapidly oscillating
terms in an orthotropic porous medium
Izv. RAN. Ser. Mat., 86:6 (2022), 47–78
-
On attractors of 2D Navier–Stockes system in a medium with anisotropic variable viscosity and periodic obstacles
Zap. Nauchn. Sem. POMI, 519 (2022), 10–34
-
On attractors of reaction–diffusion equations in a porous orthotropic medium
Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 10–15
-
Order of the orthoprojection widths of the anisotropic Nikol'skii–Besov classes in the anisotropic Lorentz space
Eurasian Math. J., 7:3 (2016), 8–16
-
Embedding theorems for anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$
Izv. RAN. Ser. Mat., 73:4 (2009), 3–16
-
About order of approximation of Besov classes in metric of anisotropic Lorentz spaces
Ufimsk. Mat. Zh., 1:2 (2009), 9–16
-
On Interpolation and Embedding Theorems for the Spaces $\overset{\star}{\mathfrak B}{}_{p\tau}^{\sigma q}(\Omega)$
Mat. Zametki, 84:5 (2008), 788–790
© , 2026