RUS  ENG
Full version
PEOPLE

Lapin Alexandr Vasil'evich

Publications in Math-Net.Ru

  1. Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4,  23–34
  2. Numerical solution of a parabolic optimal control problem with point-wise state constraints

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158:1 (2016),  81–89
  3. Penalty method for the state equation for an elliptical optimal control problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 7,  36–48
  4. Effectively implementable iterative methods for the linear elliptic variational inequalities with constraints to the gradient of solution

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 7,  10–24
  5. Solving the problem of Bingham fluid flow in cylindrical pipeline

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 2,  82–86
  6. Using domain decomposition method and non-matching grids for solving some variational inequalities

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:2 (2015),  68–78
  7. Numerical Solution of an Optimal Control Problem Governed by a Linear Elliptic Equation with Non-Local State Constraints

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:3 (2012),  129–144
  8. The solution of a state constrained optimal control problem by the right-hand side of an elliptic equation

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 152:4 (2010),  56–67
  9. Domain decomposition method for Signorini problem in mixed hybrid formulation

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:3 (2006),  80–93
  10. Mathematical model and numerical solution of filtration problem for two immiscible fluids

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:2 (2006),  65–76
  11. Solution of the obstacle problem by domain decomposition method

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 147:3 (2005),  112–126
  12. Application of variational methods in inverse boundary value problems for analytic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 7,  30–46
  13. Identification of nonlinear coefficient in a transport equation

    Lobachevskii J. Math., 14 (2004),  69–84
  14. Numerical experiments with multilevel Subdomain decomposition method

    Lobachevskii J. Math., 13 (2003),  67–80
  15. Using explicit schemes for control problems in continuous casting process

    Lobachevskii J. Math., 13 (2003),  25–38
  16. Mixed hybrid finite element scheme for stefan problem with prescribed convection

    Lobachevskii J. Math., 13 (2003),  15–24
  17. On 3D dynamic control of secondary cooling in continuous casting process

    Lobachevskii J. Math., 13 (2003),  3–13
  18. On the parallel domain decomposition algorithms for time-dependent problems

    Lobachevskii J. Math., 10 (2002),  27–44
  19. Large splitting iterative methods and parallel solution of variational inequalities

    Lobachevskii J. Math., 8 (2001),  167–184
  20. The problem of filtration through a porous barrier on a permeable foundation with a layer of salt water

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 10,  9–18
  21. Solution of the problem of filtration in a dam by the shape optimization method of optimizing: grid approximation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 9,  3–13
  22. Solution of the problem of saturated-unsaturated filtration of a fluid in soil with caking of the saturation front

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 6,  42–50
  23. Solution of the dam problem by the method of the optimal control of a region

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 4,  12–21
  24. Solution by grid methods of the problem of the filtration of a fluid in a dam with a nonlinear filtration law

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 2,  47–52
  25. Methods of upper relaxation type for the sum of a quadratic and a convex functional

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 8,  30–39
  26. Investigation of two-layer difference schemes for parabolic variational inequalities

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 10,  37–45
  27. Investigation of convergence in difference norms of schemes of the finite element method with numerical integration for fourth-order elliptic equations

    Differ. Uravn., 17:7 (1981),  1256–1269
  28. Approximation of nonlinear stationary variational inequalities

    Issled. Prikl. Mat., 9 (1981),  9–23
  29. Investigation of a nonstationary nonlinear variational inequality

    Differ. Uravn., 16:7 (1980),  1245–1254
  30. Difference schemes for quasilinear elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 20:2 (1980),  334–349
  31. Difference schemes of an arbitrary order of accuracy for quasilinear elliptic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 10,  24–37
  32. Diffusion approximation in closed queueing systems

    Issled. Prikl. Mat., 7 (1979),  95–102
  33. Local correctness of a class of nonlinear operator-difference schemes

    Issled. Prikl. Mat., 6 (1979),  32–45
  34. Investigation of a difference scheme for a nonlinear stationary problem of filtration theory

    Issled. Prikl. Mat., 6 (1979),  23–31
  35. Investigation of some non-linear problems of filtering theory

    Zh. Vychisl. Mat. Mat. Fiz., 19:3 (1979),  689–700
  36. The study of difference schemes for quasilinear degenerate elliptic equations

    Differ. Uravn., 12:5 (1976),  892–901
  37. The convergence of difference schemes for quasilinear equations that are parabolic on the solution

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 12,  30–42
  38. The correctness and convergence in the strong norm of difference schemes for quasilinear parabolic equations. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 8,  47–53
  39. The correctness and convergence in the strong norm of difference schemes for quasilinear parabolic equations. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 7,  42–52
  40. A study of the convergence of difference schemes in the norm $W^{(2)}_2$ for quasilinear elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 14:6 (1974),  1516–1525
  41. An investigation of difference schemes for a certain class of quasilinear parabolic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 1,  71–77
  42. Convergence of difference schemes for boundary problems in an arbitrary domain

    Issled. Prikl. Mat., 1 (1973),  90–93
  43. Correctness of a nonlinear two-layer difference scheme with weights

    Issled. Prikl. Mat., 1 (1973),  82–89
  44. Correctness in the strong norm of a nonlinear two-layer difference scheme

    Issled. Prikl. Mat., 1 (1973),  71–81
  45. The correctness of a nonlinear two-layer difference scheme

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 9,  48–53
  46. Efficient difference schemes for quasilinear parabolic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 3,  23–31
  47. An investigation of the method of nets for nonlinear elliptic equations of arbitrary order

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 10,  37–43

  48. Karchevskii Mikhail Mironovich (on the occasion of the 70th birthday)

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:4 (2014),  149–156


© Steklov Math. Inst. of RAS, 2026