RUS  ENG
Full version
PEOPLE

Provotorov Vyacheslav Vasil'evich

Publications in Math-Net.Ru

  1. Converging difference schemes of an elliptic equation in a class of summable functions with a network-like carrier

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 21:2 (2025),  195–214
  2. Optimal control of the stress-deformed states of a composite layered medium

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:4 (2024),  534–549
  3. Mathematical modeling of physical processesin composition media

    Russian Universities Reports. Mathematics, 29:146 (2024),  188–203
  4. Stability of three-layer differential-difference schemes with weights in the space of summable functions with supports in a network-like domain

    Izv. Saratov Univ. Math. Mech. Inform., 23:3 (2023),  357–369
  5. Optimal control of the Navier — Stokes system with a space variable in a network-like domain

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023),  549–562
  6. Optimal control of thermal and wave processes in composite materials

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:3 (2023),  403–418
  7. The method of penalty functions in the analysis of optimal control problems of Navier — Stokes evolutionary systems with a spatial variable in a network-like domain

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:2 (2023),  162–175
  8. Solution of the initial boundary value problem in symbolic form

    Russian Universities Reports. Mathematics, 28:142 (2023),  203–212
  9. Stability of operator-difference schemes with weights for the hyperbolic equation in the space of summable functions with carriers in the network-like domain

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:3 (2022),  425–437
  10. Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain

    Russian Universities Reports. Mathematics, 27:137 (2022),  80–94
  11. Optimal control of a differential-difference parabolic system with distributed parameters on the graph

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:4 (2021),  433–448
  12. Point control of a differential-difference system with distributed parameters on the graph

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:3 (2021),  277–286
  13. Stability of a weak solution for a hyperbolic system with distributed parameters on a graph

    Russian Universities Reports. Mathematics, 26:133 (2021),  55–67
  14. Countable stability of a weak solution of a parabolic differential-difference system with distributed parameters on the graph

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:4 (2020),  402–414
  15. Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:2 (2020),  129–143
  16. Stability of weak solutions of parabolic systems with distributed parameters on the graph

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:4 (2019),  457–471
  17. About one approach to solving the inverse problem for parabolic equation

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:3 (2019),  323–336
  18. Stabilization of weak solutions of parabolic systems with distributed parameters on the graph

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:2 (2019),  187–198
  19. Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:1 (2019),  107–117
  20. On stability control of a parabolic systems with distributed parameters on the graph

    Tambov University Reports. Series: Natural and Technical Sciences, 23:123 (2018),  368–376
  21. Optimal control of the linearized Navier–Stokes system in a netlike domain

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:4 (2017),  431–443
  22. Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike domain

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:3 (2017),  264–277
  23. Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:2 (2017),  209–224
  24. Start control of parabolic systems with distributed parameters on the graph

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 3,  126–142
  25. Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 3,  3–18
  26. Optimum control of parabolic system with the distributed parameters on the graph

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 3,  154–163
  27. A. Yu. Aleksandrov, A. V. Platonov. Method of comparison and stability of nonlinear system motion

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 3,  180–181
  28. Boundary control of wave system in the space of generalized solutions on a graph

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 3,  112–120
  29. The problem of boundary control for a differential system on a graph

    Izv. IMI UdGU, 2012, no. 1(39),  30–31
  30. Construction of boundary controls in the problem of oscilation damping of a system from $m$ strings

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2012, no. 1,  60–69
  31. Expansion in eigenfunctions of the Sturm–Liouville problem on a graph bundle

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 3,  50–62
  32. Eigenfunctions of the Sturm-Liouville problem on a star graph

    Mat. Sb., 199:10 (2008),  105–126


© Steklov Math. Inst. of RAS, 2026