|
|
Publications in Math-Net.Ru
-
Converging difference schemes of an elliptic equation in a class of summable functions with a network-like carrier
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 21:2 (2025), 195–214
-
Optimal control of the stress-deformed states of a composite layered medium
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:4 (2024), 534–549
-
Mathematical modeling of physical processesin composition media
Russian Universities Reports. Mathematics, 29:146 (2024), 188–203
-
Stability of three-layer differential-difference schemes with weights in the space of summable functions with supports in a network-like domain
Izv. Saratov Univ. Math. Mech. Inform., 23:3 (2023), 357–369
-
Optimal control of the Navier — Stokes system with a space variable in a network-like domain
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023), 549–562
-
Optimal control of thermal and wave processes in composite materials
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:3 (2023), 403–418
-
The method of penalty functions in the analysis of optimal control problems of Navier — Stokes evolutionary systems with a spatial variable in a network-like domain
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:2 (2023), 162–175
-
Solution of the initial boundary value problem in symbolic form
Russian Universities Reports. Mathematics, 28:142 (2023), 203–212
-
Stability of operator-difference schemes with weights for the hyperbolic equation in the space of summable functions with carriers in the network-like domain
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:3 (2022), 425–437
-
Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain
Russian Universities Reports. Mathematics, 27:137 (2022), 80–94
-
Optimal control of a differential-difference parabolic system with distributed parameters on the graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:4 (2021), 433–448
-
Point control of a differential-difference system with distributed parameters on the graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:3 (2021), 277–286
-
Stability of a weak solution for a hyperbolic system with distributed parameters on a graph
Russian Universities Reports. Mathematics, 26:133 (2021), 55–67
-
Countable stability of a weak solution of a parabolic differential-difference system with distributed parameters on the graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:4 (2020), 402–414
-
Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:2 (2020), 129–143
-
Stability of weak solutions of parabolic systems with distributed parameters on the graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:4 (2019), 457–471
-
About one approach to solving the inverse problem for parabolic equation
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:3 (2019), 323–336
-
Stabilization of weak solutions of parabolic systems with distributed parameters on the graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:2 (2019), 187–198
-
Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:1 (2019), 107–117
-
On stability control of a parabolic systems with distributed parameters on the graph
Tambov University Reports. Series: Natural and Technical Sciences, 23:123 (2018), 368–376
-
Optimal control of the linearized Navier–Stokes system in a netlike domain
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:4 (2017), 431–443
-
Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike domain
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:3 (2017), 264–277
-
Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:2 (2017), 209–224
-
Start control of parabolic systems with distributed parameters on the graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 3, 126–142
-
Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 3, 3–18
-
Optimum control of parabolic system with the distributed parameters on the graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 3, 154–163
-
A. Yu. Aleksandrov, A. V. Platonov. Method of comparison and stability of nonlinear system motion
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 3, 180–181
-
Boundary control of wave system in the space of generalized solutions on a graph
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 3, 112–120
-
The problem of boundary control for a differential system on a graph
Izv. IMI UdGU, 2012, no. 1(39), 30–31
-
Construction of boundary controls in the problem of oscilation damping of a system from $m$ strings
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2012, no. 1, 60–69
-
Expansion in eigenfunctions of the Sturm–Liouville problem on a graph bundle
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 3, 50–62
-
Eigenfunctions of the Sturm-Liouville problem on a star graph
Mat. Sb., 199:10 (2008), 105–126
© , 2026