RUS  ENG
Full version
PEOPLE

Chernov Ilya Aleksandrovich

Publications in Math-Net.Ru

  1. Class of symmetric form for a model of the hydride phase transition

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 223 (2023),  128–137
  2. High-throughput identification of hydride phase-change kinetics models

    Computer Research and Modeling, 12:1 (2020),  171–183
  3. Multi-agent search in a set: distribution of effort and estimating the efficiency

    Mat. Teor. Igr Pril., 12:2 (2020),  110–121
  4. Game-theoretic model of a volunteer computing grid

    Mat. Teor. Igr Pril., 10:3 (2018),  76–90
  5. Effective scanning of parameter space in a Desktop Grid for identification of a hydride decomposition model

    Program Systems: Theory and Applications, 9:4 (2018),  53–68
  6. Effective scanning of parameter space in a Desktop Grid for identification of a hydride decomposition model

    Program Systems: Theory and Applications, 9:4 (2018),  35–52
  7. On solvability of one difference equation

    Probl. Anal. Issues Anal., 6(24):1 (2017),  41–45
  8. A survey of task scheduling in Desktop Grid

    Program Systems: Theory and Applications, 8:3 (2017),  3–29
  9. Numerical identification of the dehydriding model in a BOINC-based grid system

    Computer Research and Modeling, 5:1 (2013),  37–45
  10. Solvability of the difference equations for the dynamics of cumulative sums

    Probl. Anal. Issues Anal., 2(20):2 (2013),  68–81
  11. Mathematical model of hydride phase change in a symmetrical powder particle

    Computer Research and Modeling, 4:3 (2012),  569–584
  12. Adjoint grid parabolic quazilinear boundaryvalue problems

    Computer Research and Modeling, 4:2 (2012),  275–291
  13. Volume and area of intersection of a ball and an infinite parallelepiped

    Probl. Anal. Issues Anal., 1(19):1 (2012),  39–57
  14. Градиентная идентификация эволюционных сеточных задач

    Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2011, no. 18,  13–20
  15. Mathematical model of exothermal hydride formation

    Mat. Model., 22:1 (2010),  3–16
  16. Сходимость сеточно-интерполяционных аппроксимаций решения квазилинейной параболической краевой задачи на отрезке

    Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2010, no. 17,  26–37
  17. Chernov. Boundary-value problem with dynamical boundary conditions and moving phase bound (dehydrating kinetics)

    Mat. Model., 16:4 (2004),  3–16
  18. Классическое решение краевой задачи с динамическими граничными условиями

    Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2000, no. 7,  109–121


© Steklov Math. Inst. of RAS, 2026