RUS  ENG
Full version
PEOPLE

Popov Sergei Petrovich

Publications in Math-Net.Ru

  1. Soliton solutions of a generalization of the coupled Volterra system

    Zh. Vychisl. Mat. Mat. Fiz., 59:11 (2019),  1872–1882
  2. Compacton solutions of the Korteweg–de Vries equation with constrained nonlinear dispersion

    Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019),  158–168
  3. Compactons and Riemann waves of an extended modified Korteweg–de Vries equation with nonlinear dispersion

    Zh. Vychisl. Mat. Mat. Fiz., 58:3 (2018),  459–472
  4. New compacton solutions of an extended Rosenau–Pikovsky equation

    Zh. Vychisl. Mat. Mat. Fiz., 57:9 (2017),  1560–1569
  5. Nonautonomous soliton solutions of the modified Korteweg–de Vries-sine-Gordon equation

    Zh. Vychisl. Mat. Mat. Fiz., 56:11 (2016),  1960–1969
  6. Scattering of solitons by dislocations in the modified Korteweg de Vries–sine-Gordon equation

    Zh. Vychisl. Mat. Mat. Fiz., 55:12 (2015),  2055–2066
  7. Numerical analysis of soliton solutions of the modified Korteweg–de Vries–sine-Gordon equation

    Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015),  435–445
  8. Interactions of breathers and kink pairs of the double sine-Gordon equation

    Zh. Vychisl. Mat. Mat. Fiz., 54:12 (2014),  1954–1964
  9. Influence of dislocations on kink solutions of the double sine-Gordon equation

    Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013),  2072–2081
  10. Limiting solitons and kinks in two-dimensional discrete systems

    Zh. Vychisl. Mat. Mat. Fiz., 53:5 (2013),  792–799
  11. Effect of cubic nonlinearity on soliton solutions of the Benjamin–Bona–Mahony equation

    Zh. Vychisl. Mat. Mat. Fiz., 53:4 (2013),  624–633
  12. Numerical study of Peakons and $k$-Solitons of the Camassa–Holm and Holm–Hone equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011),  1317–1325
  13. Application of the quasi-spectral fourier method to soliton equations

    Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010),  2176–2183
  14. Numerical simulation of soliton in simple two-dimensional lattice

    Mat. Model., 21:9 (2009),  27–33
  15. Perturbed soliton solutions of the sine-Gordon equation

    Zh. Vychisl. Mat. Mat. Fiz., 49:12 (2009),  2182–2188
  16. On the shapes of two-dimensional soliton perturbations in simple lattices

    Zh. Vychisl. Mat. Mat. Fiz., 49:2 (2009),  323–331
  17. Subsonic rarefied gas flow over a rack of flat transverse plates

    Prikl. Mekh. Tekh. Fiz., 49:1 (2008),  59–67
  18. Soliton solutions to generalized discrete Korteweg–de Vries equations

    Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008),  1698–1709
  19. Numerical study of the interaction between shocks and rarefaction waves in an ideal gas

    Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007),  155–161
  20. Numerical analysis of the Toda lattice equations

    Zh. Vychisl. Mat. Mat. Fiz., 46:6 (2006),  1032–1044
  21. Numerical simulation of soliton solutions of simples discrete equations and their continual limits

    Mat. Model., 16:5 (2004),  66–82
  22. On properties of the two-dimensional soliton solutions of an evolution equation

    Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004),  1289–1298
  23. Numerical solution of the Bogoyavlenskii kinetic equation and the Lotka–Volterra system with diffusion

    Zh. Vychisl. Mat. Mat. Fiz., 44:5 (2004),  904–916
  24. Supersonic rarefied gas flow through a grid of normally posed plane plates

    Mat. Model., 15:6 (2003),  125–128
  25. The structure of an unsteady transonic flow around a flat plate with transverse slot injection

    Zh. Vychisl. Mat. Mat. Fiz., 42:11 (2002),  1744–1755
  26. Example of simultaneous numerical solution of the Boltzmann and Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 41:3 (2001),  489–500
  27. Joint solution of Boltzmann and boundary layer equations

    Mat. Model., 12:7 (2000),  71–78
  28. Numerical implementation of two-soliton solutions to the Kadomtsev–Petviashvili equation

    Zh. Vychisl. Mat. Mat. Fiz., 40:10 (2000),  1508–1516
  29. Numerical simulation of two-soliton solutions to the Zakharov–Kuznetsov equation

    Zh. Vychisl. Mat. Mat. Fiz., 39:10 (1999),  1749–1757
  30. A conservative method for solving the Boltzmann equation with centrally symmetric interaction potentials

    Zh. Vychisl. Mat. Mat. Fiz., 39:1 (1999),  163–176
  31. Numerical analysis of certain periodic solutions to the Kadomtsev–Petviashvili equation

    Zh. Vychisl. Mat. Mat. Fiz., 38:10 (1998),  1710–1716
  32. Soliton solutions of the two-dimensional Zakharov–Kuznetsov equation

    Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998),  122–135
  33. Numerical solution of the Boltzmann and Navier–Stokes equations for a planar jet impinging on a cooled surface

    Zh. Vychisl. Mat. Mat. Fiz., 37:2 (1997),  239–242
  34. Examples of numerical solutions of the stable Kadomtsev–Petviashvili equation with sources

    Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996),  62–70
  35. A modification of the gas dynamic scheme SHASTA

    Zh. Vychisl. Mat. Mat. Fiz., 36:3 (1996),  130–134
  36. On soliton perturbations excited by an oscillator in a boundary layer

    Zh. Vychisl. Mat. Mat. Fiz., 32:1 (1992),  71–81
  37. Numerical scheme for the boundary-layer equation with self-induced pressure

    Zh. Vychisl. Mat. Mat. Fiz., 31:2 (1991),  330–333
  38. Modelling of nonlinear waves in boundary layers based on burgers, Benjamin–Ono and Korteweg–de Vries equations

    Mat. Model., 2:7 (1990),  96–109
  39. Structure of wave disturbances developing in a boundary layer with self-induced pressure in thin films

    Dokl. Akad. Nauk SSSR, 307:2 (1989),  309–311
  40. Nonlinear development of longwave inviscid perturbations in a boundary layer

    Prikl. Mekh. Tekh. Fiz., 30:3 (1989),  101–108
  41. On the solutions of the inhomogeneous Benjamin–Ono equation

    Zh. Vychisl. Mat. Mat. Fiz., 29:12 (1989),  1852–1862
  42. The entry of a freely expanding gas jet into a circular aperture in a transverse obstacle

    Zh. Vychisl. Mat. Mat. Fiz., 29:2 (1989),  277–285
  43. Nonsteady detachment wave in a boundary layer in supersonic streamline flow

    Dokl. Akad. Nauk SSSR, 303:4 (1988),  822–824
  44. Structure of an axisymmetrical nonstationary wave of absorption of laser radiation in a transparent dielectric

    Prikl. Mekh. Tekh. Fiz., 26:2 (1985),  15–17
  45. On the complex structure of a two-dimensional thermal wave that absorbs laser radiation

    Zh. Vychisl. Mat. Mat. Fiz., 25:6 (1985),  946–947
  46. Numerical investigation of the motion of a gas compressed by a collapsing spherical piston

    Zh. Vychisl. Mat. Mat. Fiz., 22:5 (1982),  1252–1255
  47. Numerical study of the parameters of a low-density plasma that absorbs CO$_2$ laser radiation

    Prikl. Mekh. Tekh. Fiz., 21:4 (1980),  35–41
  48. Solution of the unsteady problem of the evolution of a discontinuity in a viscous heat-conducting gas

    Zh. Vychisl. Mat. Mat. Fiz., 20:4 (1980),  1066–1070
  49. An algorithm for calculating two-dimensional non-equilibrium gas flows

    Zh. Vychisl. Mat. Mat. Fiz., 19:2 (1979),  546–550
  50. An application of the splitting method to the calculation of two-temperature and ionized nonequilibrium gas flows

    Zh. Vychisl. Mat. Mat. Fiz., 17:6 (1977),  1602–1607
  51. Effect of the initial particle velocity on the non-stationary spherically-symmetric motions of a gas

    Zh. Vychisl. Mat. Mat. Fiz., 17:5 (1977),  1325–1329


© Steklov Math. Inst. of RAS, 2026