RUS  ENG
Full version
PEOPLE

Naboko Ideya Mikhailovna

Publications in Math-Net.Ru

  1. Interaction of the laminar flames of natural gas–oxygen mixtures with planar obstacles, diffusers and confusers

    Mendeleev Commun., 26:1 (2016),  61–63
  2. Interaction of the laminar flames of methane-air mixtures with close-meshed spherical and planar obstacles in a closed cylindrical reactor under spark discharge initiation

    CPM, 17:2 (2015),  183–191
  3. Penetration of methane–oxygen flames through spherical and planar obstacles in a closed cylindrical reactor

    Mendeleev Commun., 25:4 (2015),  304–306
  4. Non-steady Propagation of single and Counter Hydrogen and Methane Flames in Initially Motionless Gas

    Mendeleev Commun., 24:5 (2014),  308–310
  5. Influence of an acoustic resonator on flame propagation regimes in spark initiated H2 combustion in a cylindrical reactor near the lower detonation limit

    Mendeleev Commun., 24:1 (2014),  50–52
  6. Cellular combustion at the transition of a spherical flame front to a flat front at the initiated ignition of methane–air, methane–oxygen and n-pentane–air mixtures

    Mendeleev Commun., 23:6 (2013),  358–360
  7. Interaction of the Laminar Flames of Methane–air Mixtures with Close-meshed Spherical and Planar Obstacles in a Closed Cylindrical Reactor Under Spark Discharge Initiation

    Mendeleev Commun., 23:3 (2013),  163–165
  8. On the possibility of a thermal explosion initiated by a heterogeneous reaction between H$_2$ and O$_2$ (Comments on the paper “Initiation of chain and thermal explosions by the reactor surface. Criterion for the participation of branching chains in a thermal explosion” by E. N. Aleksandrov, N. M. Kuznetsov, and S. N. Kozlov)

    Fizika Goreniya i Vzryva, 44:6 (2008),  130–134
  9. Application of parallel programs debugger for multiCPU modeling of shock and blast waves focusing

    Keldysh Institute preprints, 2004, 050, 15 pp.
  10. Investigation of buster waves moves in cumulating cavity

    Mat. Model., 16:6 (2004),  118–122
  11. Interaction of waves with cavities

    Mat. Model., 14:9 (2002),  34–40
  12. Combustion and explosion in a closed conical chamber: Numerical experiment

    TVT, 37:3 (1999),  457–463
  13. Combustion and explosion in a closed conical chamber: Physical experiment

    TVT, 37:2 (1999),  313–318
  14. Density distribution in pulsed gas jets effusing into a rarefied space

    Prikl. Mekh. Tekh. Fiz., 31:6 (1990),  123–127
  15. Flat supersonic underexpanded jets using a laser schlieren method

    Prikl. Mekh. Tekh. Fiz., 24:1 (1983),  57–65
  16. Calculating the electron-energy distribution relaxation in an expanding gas-flow

    TVT, 21:4 (1983),  666–672
  17. Investigation of jet flow past slotted and wedge-shaped nozzles in a shock tube

    Prikl. Mekh. Tekh. Fiz., 23:6 (1982),  76–80
  18. Mechanism of vibronic exchange between sodium and vibrationally nonequilibrium nitrogen

    Fizika Goreniya i Vzryva, 17:4 (1981),  106–109
  19. Analysis of the vibrational relaxation of diatomic gases under nonisothermal conditions behind a reflected shock

    Fizika Goreniya i Vzryva, 17:1 (1981),  90–93
  20. Experimental investigation of low-density pulsed supersonic jets

    Prikl. Mekh. Tekh. Fiz., 21:2 (1980),  107–113
  21. Structure of pulsed gas jets flowing out of supersonic nozzles

    Prikl. Mekh. Tekh. Fiz., 20:1 (1979),  56–65
  22. Nonstationary processes in starting strongly underexpanded jets

    Prikl. Mekh. Tekh. Fiz., 19:1 (1978),  34–40
  23. Study of three-dimensional wave structure of nonstationary gas outflow from a planar sonic nozzle

    Prikl. Mekh. Tekh. Fiz., 17:1 (1976),  41–45
  24. Экспериментальное определение полного рабочего времени в ударной трубе (№ 2481 Деп. от 1 VII 1976)

    TVT, 14:4 (1976),  915–916
  25. Formation of a jet of gas outflowing into evacuated space

    Prikl. Mekh. Tekh. Fiz., 16:2 (1975),  53–58
  26. Investigation of the fluctuations of the electron density in a jet of argon plasma using the probe method

    TVT, 13:5 (1975),  994–1002
  27. Структура потока ударно-нагретого газа в условиях импульсного газодинамического лазера

    TVT, 12:1 (1974),  122–127
  28. Investigation of unsteady flow structure during discharge of a shock-heated gas

    Prikl. Mekh. Tekh. Fiz., 14:5 (1973),  34–40
  29. Полное рабочее время в ударной трубе при исследовании истечения из отверстия в торце

    TVT, 11:4 (1973),  823–831
  30. Flow parameters behind shock waves in carbon dioxide, nitrogen, and mixtures of these

    TVT, 9:3 (1971),  550–556
  31. Экспериментальное определение рабочего времени ударной трубы методом теплового зонда

    TVT, 3:3 (1965),  457–462
  32. On the rate of the physico-chemical transformations of $\mathrm{CO}_2$ molecules behind a shock wave at 200–4000$^\circ$ К

    Dokl. Akad. Nauk SSSR, 154:2 (1964),  401–403


© Steklov Math. Inst. of RAS, 2026