RUS  ENG
Full version
PEOPLE

Losev Stalii Andreevich

Publications in Math-Net.Ru

  1. Processes in high-temperature air involving molecules and atoms in excited electron states

    TVT, 48:1 (2010),  44–51
  2. The nonequilibrium kinetics on the oxygen dissociation behind shock wave front

    Mat. Model., 21:9 (2009),  3–15
  3. Information support of modeling of physical and chemical processes in gases using internet technologies

    Mat. Model., 19:12 (2007),  13–24
  4. Production of recommended mathematical models of physical and chemical processes in thermal nonequilibrium gases

    Mat. Model., 17:8 (2005),  95–105
  5. Modelling of a one-diaphram shock tube under the action of real gas-dynamic processes in the gas under consideration

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 6,  57–59
  6. Production of recemmended mathematical models of physical and chemical processes in thermal nonequilibrium gases

    Mat. Model., 16:6 (2004),  35–39
  7. Kinetics of chemical reactions in thermally nonequilibrium gas

    Mat. Model., 15:6 (2003),  72–82
  8. The feasibility of industrial applications of the gasdynamic $\mathrm{CO}_2$ laser

    TVT, 34:6 (1996),  949–956
  9. Coherent shock-wave spectroscopy

    Kvantovaya Elektronika, 15:1 (1988),  118–126
  10. DETERMINATION OF TIME OF NITROGEN OSCILLATING RELAXATION IN SHOCK-WAVES BY THE WIDEBAND ASRLS METHOD

    Zhurnal Tekhnicheskoi Fiziki, 57:10 (1987),  2044–2046
  11. Population inversion of electronic states of alkali metals in mixtures with molecular gases under conditions of cooling in a supersonic nozzle

    Kvantovaya Elektronika, 13:6 (1986),  1185–1194
  12. Amplification of visible light by S2 molecules in a supersonically cooled mixture of gases containing sulfur

    Kvantovaya Elektronika, 12:8 (1985),  1632–1640
  13. Inversion of the populations of vibrational levels of anharmonic molecules under the influence of optical and thermal pulses

    Kvantovaya Elektronika, 12:8 (1985),  1628–1631
  14. Direct determination of the temperature distribution in the axial zone of a supersonic gas jet by the method of coherent active Raman spectroscopy

    Kvantovaya Elektronika, 11:1 (1984),  187–189
  15. Measurement of the initial gas-pressure in shock-tubes

    TVT, 21:4 (1983),  773–777
  16. Combustion of natural gas in a commercial detonation reactor

    Fizika Goreniya i Vzryva, 17:3 (1981),  68–71
  17. Investigation of the characteristics of an explosion-type gasdynamic laser utilizing the combustion products of acetylene

    Kvantovaya Elektronika, 8:5 (1981),  1002–1011
  18. Amplification of radiation in a thermally heated argon plasma under gasdynamic expansion conditions

    Kvantovaya Elektronika, 8:1 (1981),  168–169
  19. Influence of supersonic flow heating on the gain of a carbon dioxide gasdynamic laser

    Prikl. Mekh. Tekh. Fiz., 18:3 (1977),  15–18
  20. Kinetics of vibrational energy exchange in carbon dioxide gas and its mixtures with other gases

    Fizika Goreniya i Vzryva, 12:2 (1976),  163–179
  21. Multifactor optimization of a carbon dioxide gasdynamic laser. II. Specific power optimization

    Kvantovaya Elektronika, 3:5 (1976),  960–968
  22. Influence of impurities on the optical gain coefficient for a relaxing gas flow in a supersonic nozzle

    Fizika Goreniya i Vzryva, 11:5 (1975),  804–807
  23. Gasdynamic laser power at high pressure

    Prikl. Mekh. Tekh. Fiz., 16:4 (1975),  3–7
  24. Multifactor optimization of a carbon dioxide gasdynamic laser. I. Gain optimization

    Kvantovaya Elektronika, 2:7 (1975),  1454–1458
  25. Influence of admixtures on the gain of a gasdynamic carbon dioxide laser

    Kvantovaya Elektronika, 1:12 (1974),  2620–2622
  26. Optimization of the gain of a carbon dioxide gas-dynamic laser

    Kvantovaya Elektronika, 1:7 (1974),  1633–1641
  27. Kinetics of relaxation processes in shock waves and condensing gas flows

    Fizika Goreniya i Vzryva, 9:6 (1973),  767–772
  28. Large-diameter shock tube study of the processes in a gas-dynamic laser

    Fizika Goreniya i Vzryva, 9:4 (1973),  463–473
  29. Study of vibrational deactivation of molecules of carbon dioxide gas during cooling of stream in a supersonic nozzle

    Prikl. Mekh. Tekh. Fiz., 14:6 (1973),  32–40
  30. Excitation and deactivation of molecular rotation in atom-molecule collisions

    Prikl. Mekh. Tekh. Fiz., 12:6 (1971),  50–56
  31. The influence of anharmonicity on relaxation time during adiabatic excitation and deactivation of molecule oscillations

    Dokl. Akad. Nauk SSSR, 195:3 (1970),  585–588
  32. Thermal dissociation mechanism of diatomic molecules

    Fizika Goreniya i Vzryva, 6:1 (1970),  30–34
  33. Dissociation of oxygen molecules in $\mathrm{O}_2$$\mathrm{O}_2$ and $\mathrm{O}_2$$\mathrm{O}$ collisions

    Dokl. Akad. Nauk SSSR, 185:2 (1969),  293–295
  34. Excitation of vibrations and the disintegration of biatomic molecules when they collide with atoms in a high-temperature gas

    Dokl. Akad. Nauk SSSR, 185:1 (1969),  69–72
  35. Relaxation equation for the vibrational energy of the molecules in the gas behind an intense shock front

    Prikl. Mekh. Tekh. Fiz., 10:1 (1969),  106–107
  36. К определению константы скорости ассоциативной ионизации азота

    TVT, 7:5 (1969),  1015–1016
  37. The length of the relaxation zone of ionization behind the front of a strong shock wave in the air

    Dokl. Akad. Nauk SSSR, 182:1 (1968),  75–76
  38. Vibrational relaxation in collisions between atoms and molecules

    Dokl. Akad. Nauk SSSR, 178:6 (1968),  1289–1292
  39. Vibrational relaxation of diatomic molecules

    TVT, 6:5 (1968),  794–800
  40. О механизме процесса излучения азота в неравновесной области за фронтом ударной волны

    TVT, 6:3 (1968),  381–389
  41. Excitation of vibrational degrees of freedom upon molecular collisions

    Dokl. Akad. Nauk SSSR, 167:6 (1966),  1280–1282
  42. Kinetics of carbon dioxide dissociation behind a shock front

    Prikl. Mekh. Tekh. Fiz., 7:4 (1966),  133–138
  43. Relaxation of the vibrational energy of air molecules behind the front of a direct shock wave

    Dokl. Akad. Nauk SSSR, 156:5 (1964),  1057–1060
  44. Breakdown of carbon dioxide molecules at high temperature

    Dokl. Akad. Nauk SSSR, 150:4 (1963),  839–841
  45. On the forces of intermolecular interaction as determined from a study of vibratory relaxation in oxygen

    Dokl. Akad. Nauk SSSR, 148:3 (1963),  552–554
  46. Колебательная релаксация и взаимодействие молекул в кислороде при высоких температурах

    Prikl. Mekh. Tekh. Fiz., 4:1 (1963),  145–150
  47. On the vibration excitation and breakdown of oxygen molecules at high temperatures

    Dokl. Akad. Nauk SSSR, 141:5 (1961),  1072–1075
  48. The rate of breakdown of oxygen molecules at high temperatures

    Dokl. Akad. Nauk SSSR, 141:4 (1961),  894–896
  49. The study of nonequilibrium phenomena in shock waves

    UFN, 74:3 (1961),  393–434
  50. Unequilibrium state behind a shock wave in the air

    Dokl. Akad. Nauk SSSR, 133:4 (1960),  872–874
  51. К исследованию неравновесных явлений за фронтом ударной волны в воздухе. Диссоциация кислорода

    Prikl. Mekh. Tekh. Fiz., 1:2 (1960),  64–73
  52. An investigation of the oxygen dissociation process behind a strong shock wave

    Dokl. Akad. Nauk SSSR, 120:6 (1958),  1291–1293

  53. Vladas Bronislovo Leonas (Obituary)

    UFN, 163:2 (1993),  107–108


© Steklov Math. Inst. of RAS, 2026